
VERIFIABLE TIMED COMMITMENTS EXPLORED: TIMED SIGNATURE
SCHEMES AND AN APPLICATION TO SEALED-BID AUCTIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

DUYGU ÖZDEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

CRYPTOGRAPHY

JULY 2023

Approval of the thesis:

VERIFIABLE TIMED COMMITMENTS EXPLORED: TIMED SIGNATURE
SCHEMES AND AN APPLICATION TO SEALED-BID AUCTIONS

submitted by DUYGU ÖZDEN in partial fulfillment of the requirements for the de-
gree of Doctor of Philosophy in Cryptography Department, Middle East Technical
University by,

Prof. Dr. A. Sevtap Selçuk Kestel
Dean, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Oğuz Yayla
Head of Department, Cryptography

Assoc. Prof. Dr. Oğuz Yayla
Supervisor, Cryptography, METU

Examining Committee Members:

Prof. Dr. Murat Cenk
Cryptography, METU

Assoc. Prof. Dr. Oğuz Yayla
Cryptography, METU

Prof. Dr. Ali Aydın Selçuk
Computer Engineering, TOBB ETU

Assoc. Prof. Dr. Fatih Sulak
Mathematics, Atılım University

Assist. Prof. Dr. Talha Arıkan
Mathematics, Hacettepe University

Date:

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: DUYGU ÖZDEN

Signature :

v

vi

ABSTRACT

VERIFIABLE TIMED COMMITMENTS EXPLORED: TIMED SIGNATURE
SCHEMES AND AN APPLICATION TO SEALED-BID AUCTIONS

Özden, Duygu

Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Oğuz Yayla

July 2023, 73 pages

Timed commitments are cryptographic primitives that allow one party to commit to a
value for a specific duration of time while providing proof of the committed value’s
existence and integrity. This thesis explores the concept of verifiable timed commit-
ments and investigates their applications in timed signature schemes and sealed-bid
auctions. We discuss the security requirements, construction techniques, and compu-
tational complexity of the proposed signature schemes. Furthermore, we examine the
application of verifiable timed commitments in sealed-bid auctions, which are widely
used in sensitive bidding environments. Sealed-bid auctions require bidders to submit
their bids privately, without knowledge of other participants’ bids, and simultaneously
reveal them at a predetermined time. We explore how timed commitments can ensure
bid confidentiality, integrity, and fairness in sealed-bid auctions. We discuss the pro-
tocols for commitment generation, commitment opening, and bid verification, along
with the necessary security considerations. The research employs a multi-disciplinary
approach, including theoretical analysis, algorithm design, and applications, to assess
the security of the proposed schemes based on verifiable timed commitments.

Keywords: verifiable timed commitment, sealed-bid auction, timed signature, fair-
ness

vii

viii

ÖZ

DOĞRULANABİLİR ZAMANLI TAAHHÜTLERİN İNCELENMESİ: ZAMANLI
İMZA ŞEMALARI VE KAPALI TEKLİF MÜZAYEDELERİNE UYGULANMASI

Özden, Duygu

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Oğuz Yayla

Temmuz 2023, 73 sayfa

Zamanlanmış taahhütler, bir tarafın bir değeri belirli bir süre için taahhüt etmesine ve
o değerin varlığını ve bütünlüğünü kanıtlamasına olanak tanıyan protokollerdir. Bu
tez, doğrulanabilir zamanlanmış taahhüt kavramını keşfeder ve zamanlanmış imza
şemaları ve kapalı teklif müzayedeleri üzerindeki uygulamalarını araştırır. Çalışma,
önerilen imza şemalarının güvenlik gereksinimlerini, yapım tekniklerini ve hesap-
lama karmaşıklığını ortaya koymaktadır. Ayrıca, hassas teklif verme ortamlarında
yaygın olarak kullanılan kapalı teklif müzayedelerinde doğrulanabilir zamanlanmış
taahhütlerin uygulamaları incelenmektedir. Kapalı teklif müzayedeleri, katılımcıların
birbirlerinden habersiz olarak tekliflerini gizli bir şekilde sunmalarını ve aynı anda be-
lirlenmiş bir zamanda ortaya çıkarmalarını gerektirir. Zamanlanmış taahhütlerin teklif
gizliliği, bütünlüğü ve adilliği nasıl sağlayabileceği araştırılmıştır. Taahhüt oluşturma,
taahhüt açma ve teklif doğrulama protokollerini ve gerekli güvenlik hususları da, bu
tezde tartışılmaktadır. Araştırma, doğrulanabilir zamanlanmış taahhütler üzerine ku-
rulu önerilen şemaların güvenliğini değerlendirmek için teorik analiz, algoritma tasa-
rımı ve uygulamaları içeren çok disiplinli bir yaklaşım kullanmaktadır.

Anahtar Kelimeler: doğrulanabilir zamanlanmış taahhüt, kapalı teklif müzayedesi,
zamanlanmış imza, adillik

ix

To all the earthquake victims who lost their hope and to my dear grandmother...

x

ACKNOWLEDGMENTS

First of all, I would like to thank my esteemed supervisors, Prof. Dr. Murat Cenk
and Assoc. Prof. Dr. Oğuz Yayla who worked with me throughout this long journey.
Since I live abroad, I am grateful to them for working with me day and night, despite
the time differences and all their busy schedules.

I would also like to thank the precious members of the thesis monitoring committee
and the thesis jury, dear Prof. Dr. Ali Aydın Selçuk, Assoc. Prof. Dr. Pelin Angın,
Assoc. Prof. Dr. Ali Doğanaksoy, Assoc. Prof. Dr. Fatih Sulak and Res. Asst. Talha
Arıkan. They always enlightened my way with their questions and suggestions.

I am also grateful to my family, my beloved ones/close friends Mert, Nihal, Şahika,
Buse, and my colleagues at Deloitte (especially those at the CIC) for their support
during all these stressful times.

Finally, over the past 6 months, while working on my thesis, I faced two painful
events. One was the loss of my dear grandmother, who had been a tremendous source
of support and had prayed for the completion of this thesis. The other one was the
earthquake disaster in which we lost thousands of people who had dreams like me.
As I went along this path, I found the motivation to dedicate my thesis to them. Their
memory and my purpose to dedicate my work to them inspired me. Thank you for
being the light to me in those dark days when I lost you.

xi

xii

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xi

TABLE OF CONTENTS . xiii

LIST OF TABLES . xvii

LIST OF FIGURES . xviii

LIST OF ABBREVIATIONS . xix

CHAPTERS

1 INTRODUCTION . 1

1.1 Background and Our Motivation 1

1.2 Thesis Contribution . 3

1.3 Organization . 4

2 PRELIMINARIES . 5

2.1 RSA Encryption . 5

2.2 RSA Signature . 5

2.3 Bilinear Pairing . 6

xiii

2.4 BLS Signature . 6

2.5 Multi-signature Protocol (MSP) 7

2.6 Accountable Subgroup Multi-signatures (ASM) 8

2.6.1 ASM by Boneh et al. 8

2.6.2 Security Requirements for Multi-signatures 9

2.7 Proxy Signatures . 10

2.7.1 Security Requirements 11

2.8 Zero Knowledge Proof (ZKP) 12

2.9 Timed Cryptography . 12

2.9.1 Timed Signatures 13

2.9.2 Time Lock Puzzles (TLP) and Advantages of Ho-
momorphism: . 14

2.9.3 Verifiable Timed Signatures (VTS) 16

2.9.3.1 Verifiable Timed BLS Signature (VT-
BLS): 16

2.9.4 Verifiable Timed Commitments (VTC) 19

2.9.5 Security Requirements for VTS and VTC 21

2.10 Auction Schemes . 22

2.10.1 Privacy and Security Considerations in Auctions . 23

3 VERIFIABLE TIMED COMMITMENT APPLICATIONS WITHIN
SIGNATURE SCHEMES . 25

3.1 Verifiable Accountable Timed Proxy Signatures (VAT-PS) . . 25

3.1.1 Scenario 1-VAT-PS by timed delegation 26

xiv

3.1.2 Scenario 2-VAT-PS by time-bounded delegation . . 30

3.1.3 Scenario 3-VAT-PS as a timed signature 32

3.1.4 Security Analysis of VAT-PS Schemes 33

3.1.4.1 VTS/VTC Security: 33

3.1.4.2 Verifiability: 34

3.1.4.3 Strong Unforgeability: 35

3.1.4.4 Strong Undeniability: 35

3.1.4.5 Strong Identifiability: 36

3.1.4.6 Prevention of Misuse: 36

3.1.5 Computational Complexity of VAT-PS Schemes . . 36

3.2 Verifiable Timed Multi-signatures 37

3.2.1 Verifiable Timed Multi-signature Protocol (VT-MSP-
v1) . 37

3.2.1.1 Security of VT-MSP-v1: 39

3.2.2 Verifiable Timed Multi-signature Protocol - VT-
MSP-v2 . 40

3.2.2.1 Security of VT-MSP-v2: 42

3.2.3 Verifiable Timed Accountable Subgroup Multi-signatures 43

3.2.3.1 Modified Accountable Subgroup Multi-
signatures: 43

3.2.3.2 VTC with mASM-v1 (VT-mASM-v1): 45

3.2.3.3 Security of VT-mASM-v1: 47

xv

3.2.4 Verifiable Accountable Timed Proxy Multi-signatures
(VAT-PMS): . 48

3.2.4.1 VAT-PMS as a timed signature: 48

3.2.4.2 Security of VAT-PMS: 51

3.2.5 Performance Evaluation: 51

4 VERIFIABLE TIMED COMMITMENTS FOR FAIR SEALED BID
AUCTIONS . 53

4.1 Proposed Auction Scheme 53

4.1.1 Stage 1: Signing the contract of the auction 54

4.1.2 Stage 2: Bidding phase with VTC 55

4.2 Security Consideration . 58

4.2.1 Security analysis 59

5 CONCLUSION . 61

REFERENCES . 63

APPENDICES

A PROOFS OF THE THEOREMS . 67

A.1 Proof of Theorem 1 . 67

A.2 Proof of Theorem 2 . 68

A.3 Proof of Theorem 3 . 70

A.4 Proof of Theorem 4 . 71

CURRICULUM VITAE . 73

xvi

LIST OF TABLES

Table 3.1 Computational complexity of the proposed VAT-PS schemes and
recent proposals for pairing-based proxy signature schemes 38

Table 3.2 Computational complexity of VT-BLS and proposed VT-based multi-
signature schemes . 52

xvii

LIST OF FIGURES

Figure 3.1 VAT-PS by Timed Delegation . 27

Figure 3.2 VAT-PS by Time-bounded Delegation 31

Figure 3.3 VAT-PS as a Timed Signature . 33

Figure 3.4 VT-MSP-v1 . 39

Figure 3.5 VT-MSP-v2 . 42

Figure 3.6 VT-mASM-v1 . 47

Figure 3.7 VAT-PMS . 50

Figure 4.1 Signing the contract . 55

Figure 4.2 Bidding Phase with VTC . 57

Figure 4.3 Proposed Auction Scheme . 58

xviii

LIST OF ABBREVIATIONS

VTS Verifiable Timed Signatures

BLS Boneh–Lynn–Shacham

ECDSA Elliptic Curve Digital Signature Algorithm

RSA Rivest–Shamir–Adleman

VT-BLS Verifiable Timed BLS Signature

VTC Verifiable Timed Commitments

VTD Verifiable Timed Dlog

MSP Multi-signature Protocol

ASM Accountable Subgroup Multi-signatures

TLP Time Lock Puzzles

LHTLP Linearly Homomorphic TLP

FHTLP Fully Homomorphic TLP

ZKP Zero-knowledge Proof

NIZK Non-interactive ZKP

mASM modified ASM

VAT-PS Verifiable Accountable Timed Proxy Signatures

VAT-PMS Verifiable Accountable Timed Proxy Multi-signatures

VT-MSP Verifiable Timed Multi-Signature Protocol

VT-mASM Verifiable Timed Accountable Subgroup Multi-signatures

PRAM Parallel Random Access Machine

PPT Probabilistic Polynomial Time

FPSB First-price sealed-bid

crs common reference string

PK Public Key

apk aggregated public key

xix

xx

CHAPTER 1

INTRODUCTION

In today’s digital era, secure and trustworthy communication protocols are of utmost

importance. Timed commitments play a vital role in ensuring integrity and fairness

in various applications. This thesis delves into the exploration and analysis of verifi-

able timed commitments, specifically focusing on timed signature schemes and their

application to sealed-bid auctions.

Verifiable timed commitments [28] provide a means to securely bind a commitment to

a value while incorporating a temporal dimension. This temporal aspect introduces a

time component, allowing for commitments to be time-stamped and validated within

specified intervals. The utilization of timed commitments in cryptographic protocols

ensures accountability, enhances transparency, and enables the detection of malicious

behavior.

1.1 Background and Our Motivation

Thyagarajan et al. [29] have provided an efficient construction of verifiable timed

commitments within well-known signature algorithms such as BLS [5], Schnorr [26],

and ECDSA [15]. While exploring other timed signature schemes that hold practical

relevance, we have identified proxy signatures and multi-signatures as particularly

valuable due to their widespread use in various applications. Proxy signatures, ini-

tially proposed by Mambo et al. [21], enable the delegation of signing privileges

while maintaining the security and integrity of the original signer’s key. Subsequent

research has focused on enhancing proxy signature schemes’ efficiency, security, and

1

functionality. Notably, threshold proxy signature schemes [32] have emerged as sig-

nificant improvements, introducing a threshold mechanism that requires the involve-

ment of multiple proxies to generate a valid proxy signature. This approach strength-

ens security and mitigates the risk of a single point of failure. Various types of proxy

signatures, including accountable proxy signatures [10], identity-based proxy (multi-

)signatures [2, 25], anonymous proxy signatures [7]), certificate-based proxy signa-

tures [18, 31], and homomorphic proxy signatures [19] have been proposed. In our

research, we focus on making verifiable timed proxy signatures, allowing the dele-

gation of signing authority to a proxy signer within a predefined time frame. Fur-

thermore, multi-signature schemes are also important as they enable multiple parties

to collectively and securely authorize transactions or actions, ensuring enhanced se-

curity, accountability, and decentralized decision-making. Although the accountable

subgroup multi-signature (ASM) version of a multi-signature was initially introduced

by Micali et al. [22], a recent and highly efficient ASM scheme introduced by Boneh

et al. [4] has had a significant impact, especially in blockchain applications. This

scheme allows users to generate their individual signatures first and subsequently

select the subgroup for signing, facilitating flexibility and practical implementation.

In our ASM-based proposals, we aim to use the advantages of ASM and design a

timed version of it. All the schemes suggested in this research paper rely on pairings,

which makes them ideal for low-bandwidth communication. This is because they

can generate compact signature schemes, similar to the pairing-based (VT-BLS) [29]

construction.

One other important motivation of this study is the application of a proposed signature

scheme in a widely used application. Digital auctions have gained significant impor-

tance, serving as a widely used method for various purposes, including purchasing

services or selling exclusive products. Given the broad range of applications, trust,

verifiability, and fairness become indispensable attributes within auction mechanisms.

Traditionally, timed commitments have been employed in auction setups, relying on

a trusted third party. However, with the advent of blockchain technology, the focus

has shifted toward decentralized auctions to eliminate the need for such trust require-

ments. A recent development in this area is the concept of a hybrid blockchain, which

combines public and private blockchains [9]. Another notable example is "Strain" [3],

2

which utilizes blockchain infrastructure to ensure bid confidentiality, while Galal et

al. [13] propose a construction emphasizing verifiability. Many proposals in this do-

main revolve around blockchain-based systems that leverage smart contracts, using

programmable solutions to incorporate desired temporal features [29]. Malavolta et

al. [20] proposed the use of homomorphic time-lock puzzles, similar to those in Veri-

fiable Timed Commitments (VTC), for designing a sealed-bid auction. However, they

suggested that for scalability, each user should place their bid in a single puzzle and

submit it to the auctioneer, who would determine the winner through homomorphic

calculations. This approach requires fully homomorphic time-lock puzzles (FHTLP)

due to their complexity.

Overall, our research explores the integration of verifiable timed commitments with

different signature protocols and uses the advantages derived from this integration in

designing an auction.

1.2 Thesis Contribution

In our research, we introduce the concept of verifiable accountable timed proxy sig-

natures, allowing the delegation of signing authority to a proxy signer within a pre-

defined time frame. Similar to proxy signature schemes, the inclusion of verifiable

timed commitments in accountable subgroup multi-signatures enables the creation of

multi-signatures that require the participation of specific subgroup members within a

designated time window. This feature ensures the accountability and verifiability of

subgroup members’ contributions, making the resulting multi-signature more robust

and tamper-resistant. Considering these factors and the suitability for the design of

proxy and multi-signatures, we propose a compact structure where we combine ASM

within the concept of proxy multi-signatures and incorporate timed commitments. To

the best of our knowledge, the suggested schemes are the first verifiable timed proxy

signature and multi-signature proposals that take advantage of time lock puzzles. Ad-

ditionally, we aim to adapt LHTLP to the auction schemes instead of FHTLP. We

propose an auction design where the bid shares of users are distributed across multi-

ple puzzles, instead of sharing the actual bid. This is also the first auction proposal

that considers LHTLP in conjunction with verifiable timed commitments.

3

1.3 Organization

This thesis is structured into five sections. Section 1 provides an introduction to the

topic, including the background, problem statement, objectives, and an overview of

the structure. Section 2 presents the underlying cryptographic mechanisms and al-

gorithms used in this work. Section 3 focuses on the integration of verifiable timed

commitments into signature schemes, discussing their implications for generating se-

cure and verifiable digital signatures. Section 4 explains our proposal for designing

a fair sealed-bid auction using verifiable timed commitments. Finally, Section 5 con-

cludes the study by summarizing the key findings, and outlining potential avenues for

future research.

4

CHAPTER 2

PRELIMINARIES

This chapter of this thesis serves as a comprehensive introduction to the fundamental

concepts and background information necessary for understanding verifiable timed

commitments, and their usage in signature schemes and sealed-bid auctions. By ex-

plaining the algorithms and security requirements used during the research, it is aimed

to deal with the proposed systems from different perspectives.

2.1 RSA Encryption

Key Generation: Let p, q be distinct prime numbers. Calculate N = p·q and ϕ(N) =

(p− 1) · (q − 1). Select an integer e, where gcd(ϕ(N), e) = 1; 1 < e < ϕ(n). Find d

such that e · d mod ϕ(N) = 1. Parse public key= (e,N) and private key= (d, p, q) .

Encryption: Let M < N be a message to be encrypted. The encryption algorithm is

E(M) = M e = c mod N , where c is the ciphertext.

Decryption: Let c be a ciphertext to be decrypted. The decryption algorithm is

D(c) = cd = M mod N where M is the plaintext.

2.2 RSA Signature

Key Generation: Let p, q be different prime numbers. Calculate N, ϕ, e, d,M as

described in the RSA encryption.

5

RSA signature generation: Let h = Hash(M). Compute the signature: s = hd

mod N .

RSA signature verification: Calculate the hash of the message M as h′ = Hash(M).

Check if h′ = h. If it is equal, check if h = se mod N . If it holds, the signature is

verified.

2.3 Bilinear Pairing

A bilinear pairing is a function e : G1×G2 → GT on groups G1,G2,GT that satisfies

bi-linearity and non-degeneracy:

Bilinearity: For all integers b and d, for all elements a in G1 and c in G2, e(ab, cd) =

e(a, c)bd.

Non-degeneracy: The pairing e(g1, g2) is not equal to 1 for all generators g1 and g2

of G1 and G2, respectively.

Bilinear groups are fundamental to various cryptographic schemes, especially within

certain types of digital signatures. The properties of bilinear groups enable the con-

struction of efficient and secure cryptographic protocols based on mathematical oper-

ations and pairings between different groups.

2.4 BLS Signature

Given groups (G1,G2,GT) and generators (g1, g2) of the group pair (G1,G2), con-

sider an efficient, non-degenerate bilinear map e : G1 × G2 → GT . A function

H : {0, 1}∗ → G1 is defined to map any arbitrary binary string onto the group G1.

Let H0, H2 : {0, 1}∗ → G1 and H1 : {0, 1}∗ → Zq be the hash functions which are

collision resistant.

BLS signature [5] has three phases: Key Generation (KeyGen), Signature Generation

(SigGen), and Verification.

1. Key Generation (KeyGen): Randomly select a secret key sk from the set of

6

integers modulo q, and use it to compute the corresponding public key pk = gsk2 .

2. Signature Generation (SigGen): To generate a signature for a given message m,

compute σ = H(m)sk, where sk is the secret key.

3. Verification: Check if the following equation is satisfied:

e(H(m), pk) = e(σ, g2) (2.1)

2.5 Multi-signature Protocol (MSP)

Boneh et al. introduced the multi-signature protocol (MSP) in their work [4]. It is

an efficient multi-signature scheme that builds on top of BLS and involves the steps

given below:

Assume that the hash functions, groups, generators of the groups, and bilinear map

are the same with BLS.

1. Key Generation: To generate a key pair in this scheme, a secret key ski is selected

at random from Zq, and the corresponding public key pki is obtained by computing

gski2 for a user i.

2. Key Aggregation: Aggregated public key

apk =
n∏

i=1

pkai
i ,

where

ai = H1(pki, {pk1, . . . , pkn}).

3. Signature Generation: Calculate the multi-signature

σi = H0(m)aiski , (2.2)

where m is the message to be signed.

4. Signature Aggregation: Multi-signature is

σ =
n∏

j=1

σi.

7

5. Verification: Check if

e(H0(m), apk) = e(σ, g2). (2.3)

2.6 Accountable Subgroup Multi-signatures (ASM)

An accountable subgroup multi-signature (ASM) scheme is a type of multi-signature

in which a message m can be signed by any subgroup S of a group G, and the sig-

natories from the subgroup S are responsible for the signature. In multi-signatures,

accountability pertains to the capacity to recognize and assign the actions of individ-

ual signers within the scheme. It guarantees that each signer can be held accountable

for their unique signatures and actions within the group. ASM was defined first time

in 2001 [22]. After the term construction with a generic protocol definition, one of the

most important improvements in ASM schemes is the ASM scheme constructed by

Boneh et al. [4]. The objective of developing this “short" ASM scheme was to reduce

the size of the Bitcoin blockchain. In this algorithm, “short" means the signature size

is O(λ)-bits, where λ is the security constant. This ASM scheme showed that it is

very practical and applicable to blockchain cryptosystems. In addition, accountabil-

ity is primarily ensured by the presence of a membership key unique to each user,

corresponding to the specific group they belong to.

2.6.1 ASM by Boneh et al.

Boneh et al.’s ASM scheme [4] consists of 5 tuples: KeyGen, Group Setup, Signa-

tureGen, Signature Aggregation (Signature Aggr), and Verification. These steps are

explained below. PK is defined as the collection of public keys belonging to the

members of group G, denoted by pk1, . . . , pkn.

• KeyGen: Every user i ∈ G gets a random secret key ski ← Zq and calculates

public key pki ← gski2 where g2 is the generator of the group G2.

• Group Setup: Every user performs group setup using one round interactive

protocol.

8

– Users are responsible for computing the group’s aggregated public key

apk as: apk =
∏n

i=1 pk
ai
i where ai = H1(pki, PK).

– Each user sends

µji := H2(apk, j)
aiski (2.4)

to the j-th member for j = 1, 2, . . . , n and j ̸= i.

– After receiving µij , the user calculates µii = H2(apk, i)
aiski .

– For a user i, the membership key is mki =
∏n

j=1 µij . The membership

keys are specific to the group that contains the users and are used to create

the signature of a user.

• SignatureGen: A signer calculates his/her individual signature as

si = H0(apk,m)ski ·mki

and delivers si to the combiner who is responsible for creating the multi-signature.

• Signature Aggr: The combiner first forms the set of signers S ⊆ G. Then,

she computes the aggregated subgroup multi-signature σ = (s, pk) where s =∏
i∈S si and pk =

∏
i∈S pki.

• Verification: The signature σ = (s, pk) can be verified by anyone in possession

of par, apk, S,m, σ by checking if:

e(s, g2) = e(H0(apk,m), pk).e(
∏
j∈S

H2(apk, j), apk)

The ASM’s membership key and individual signature generation stages contribute to

achieving accountability and timed-based construction.

2.6.2 Security Requirements for Multi-signatures

As an expected security property, the unforgeability of multi-signatures is impor-

tant because it enhances security by preventing unauthorized parties from creating

valid signatures. It ensures that transactions require the consensus and cooperation of

multiple parties, reducing the risk of fraud, enabling distributed trust, and providing

accountability in digital transactions.

9

Definition 1 (Unforgeability). The unforgeability of a multi-signature scheme is de-

fined by a three-stage game [4]:

Setup: A challenger runs KeyGen to generate a key pair (pk′, sk′) and sends pk′ to

adversary Adv.

Signature Queries: Adv issues chosen message queries and receives their signa-

tures(signed with sk′) from the challenger.

Output: Adv outputs a forgery: list of public keys(pk1, pk2, pk3, . . . , pkn), a message

from the message set(m ∈ M), and a multi-signature σ. The Adv wins the game if

pk′ ∈ PK, Adv creates no signing queries on m and

Verification(pk′, pk1, pk2, pk3, . . . , pkn,m, σ) = 1

Based on this game, Adv is a (τ, qS, qH , ϵ)-forger for a multi-signature if it runs in

time τ , creates qS many signature queries, makes qH many random oracle queries

and becomes the winner of the game with probability at least ϵ. That multi-signature

is unforgeable if no one like that exists.

2.7 Proxy Signatures

A proxy signature allows one entity, known as the original signer/delegator, to dele-

gate their signing authority to another entity, known as the proxy signer. The proxy

signer can then generate signatures on behalf of the delegator. These are commonly

used in such cases where the delegator wants to delegate signing capabilities tem-

porarily or to perform signatures without direct involvement. In general, they work

as follows:

• Key Generation:

The main(original) signer and the proxy signer generate their key pair consist-

ing of a private key and a corresponding public key.

• Setup:

10

The original signer and the proxy signer establish a trusted relationship, typi-

cally through a secure communication channel or a trusted intermediary. Then,

the original signer authorizes the proxy signer to act on their behalf.

• Delegation:

In the delegation step, the original signer creates a warrant w that contains

relevant information about the delegation and signing process. This information

generally contains the identity of the signers, the delegation time range, and the

details of the message.

• Proxy Signature Generation:

The proxy signer first checks if the delegation information is correct or not.

Then, they create the signature.

• Proxy Signature Verification:

A verifier receives the message, the proxy signature, and the public keys of the

original and proxy signer and checks if the signature is valid or not.

2.7.1 Security Requirements

In the proxy signatures with the delegation by the warrant, several security require-

ments play a crucial role [17]. Verifiability ensures that the validity of a proxy signa-

ture can be confirmed by any party, including the warrantor or a third party. Strong

unforgeability guarantees that generating a valid proxy signature without the proxy

signer’s private key is computationally infeasible, preventing unauthorized parties

from creating fraudulent signatures. Strong undeniability establishes evidence or

proof to prevent the proxy signer from denying their actions. Strong identifiability

enables the unique identification of the proxy signer. Finally, the prevention of mis-

use ensures that the delegated authority is used only within the defined limits and

restrictions specified by the warrant, preventing any unauthorized or improper use of

the signing rights.

11

2.8 Zero Knowledge Proof (ZKP)

ZKP enables the demonstration of a statement’s truthfulness without revealing any-

thing other than the statement’s own validity. The non-interactive version of ZKP [8]

allows proof of the statement by the prover without any interaction with the verifier.

NIZK [8] contains 3-tuples: ZKSetup, ZKProve and ZKVerify:

• ZKSetup phase(1λ): Note that 1λ is a security constant .

-The output will be the “common reference string" (crs).

• ZKProve phase(crs, x, w): The presence of a “witness" (w) is crucial in prov-

ing the truthfulness of a statement (x).

-The statement’s validity with the witness outputs the proof π.

• ZKVerify phase(crs, x, π): The verification will show if the statement and the

corresponding proof are true.

-The output will be “yes/verified" or “no’/not verified", depending on whether

the requirements for the verification of the protocol are met.

2.9 Timed Cryptography

Timed-release cryptography aims to achieve the idea that the message can be sent to

the future and opened only after some predefined time T . As the first construction of

timed cryptography, the concept of “timed commitments" was introduced for the first

time in 2000 [6]. A timed commitment scheme for a message or any value provides

the sender with a commitment to the value. After some time T , the sender can prove

this commitment or if the sender refuses this statement, the receiver can retrieve the

committed message within time T by forcing it open. Therefore, a time commitment

basically contains 3 phases:

• Commitment generation: To commit on a message.

• Open: Sender can open the commitment to show the message.

12

• Forced Open: If the sender chooses not to disclose the commitment, the re-

ceiver can use this algorithm to prove the commitment and unveil the committed

message within a duration of T .

Timed cryptography contains several types of applications such as time-lock puzzle

generation, timed release of signatures as well as timed commitments.

2.9.1 Timed Signatures

Timed signatures are a type of time commitment in which the sender can commit to

a signature of a message/document. More formally, a timed signature contains five

tuples:

1. Setup phase: Any message signer generates a key pair (publickey, privatekey)

using a KeyGen algorithm.

2. A signature generation algorithm: A valid signature contains 3 tuples, namely

S,C, and Sig where C is a timed commitment when committing to a string S and Sig

can be verified using publickey as a valid signature on a message M .

3. Commit phase: The signer of a message chooses a random private string S and

creates a timed commitment on S named C.

4. Open phase: The sender (signer) opens the committed string S. The receiver

(verifier) gets a valid signature tuple namely {S,C, Sig}.

5. Forced Open phase: Use forced open protocol to retrieve the committed value S

by the related timed commitment phase.

One crucial requirement for timed signatures is verifiability, which is proof that the

receiver gets the correct message with a valid signature. An efficient version of the

term “Verifiable Timed Signature" was defined recently in an article [29] by Thya-

garajan et al. as an application of timed signature.

13

2.9.2 Time Lock Puzzles (TLP) and Advantages of Homomorphism:

TLPs [24] let a person encrypt a message to the future. According to the verifiable

timed signature (VTS) and verifiable timed commitment (VTC) proposed by [29],

usage of TLP provides efficiency to the current applications, and the linearly homo-

morphic time lock puzzle (LHTLP) version makes them even more efficient where

ForceOpen algorithm needs to solve only one packed puzzle instead of many. We use

the same notation of LHTLP given in [29] while constructing timed lock puzzles. In

addition, we use the range proofs for linearly homomorphic time lock puzzles. These

range proofs enable the verification of properties like the value being within a certain

range or meeting certain arithmetic conditions. By using linearly homomorphic time

lock puzzles, it becomes possible to perform computations on locked values. This

allows the prover to create proof for a locked value without revealing itself. The ver-

ifier can then verify the range proof without knowing the actual value. In this thesis,

we follow the range proofs provided by [29]. In our schemes, range proofs are used

in timed structures where the signer needs to verify a value or the signature created

by the signer needs to be verified. Those proofs are zero-knowledge proofs (denoted

as ZKProve).

LHTLP [20] over the ring (ZN ,+) contains a tuple of 4 algorithms: PuzzleSetup,

PuzzleGeneration, PuzzleSolve, and PuzzleEval and is defined as follows:

• PuzzleSetup phase(1λ, T): Note that 1λ is a security constant and T is the

agreed time.

-With prime numbers p′ and q′, sample p = 2p′ + 1 and q = 2q′ + 1 and set

N := pq.

-Sample a uniform g̃
$← Z∗

N and set g := −g̃2 mod N .

-Calculate and set h := g2
T that can be optimized by reducing 2T mod ϕ(N)/2.

-In the end, the output will be public parameters pp := (T,N, g, h).

• PuzzleGeneration phase(pp, s): Note that s is the solution from the solution

set S. The solution is the value to be locked in a puzzle that is intended to be

solved after time T .

-Set pp := (T,N, g, h).

14

-Sample an r
$← {1, . . . , N2}.

-Calculate u := gr mod N and v := hr.N .(1 +N)s mod N2.

-In the end, the output will be the puzzle Z := (u, v).

• PuzzleSolve phase(pp, Z):

-Set pp := (T,N, g, h).

-Set the puzzle Z := (u, v).

-Calculate w := u2T mod N by Repeated Squaring Method.

-In the end, the output will be the solution s := v/(w)N (modN2)−1
N

.

• PuzzleEval phase(pp, Z1, . . . , ZN):

-Set pp := (T,N, g, h).

-Set every Zi := (ui, vi) ∈ JN × Z∗
N2 .

-Calculate ũ :=
∏n

i=1 ui mod N and ṽ :=
∏n

i=1 vi mod N2.

-In the end, the output will be the puzzle Z ′ = (ũ, ṽ).

Note that, PuzzleSetup, PuzzleGeneration, and PuzzleEval phases are the prob-

abilistic algorithms whereas the PuzzleSolve phase is a deterministic algorithm.

Here, it is important to explain NIZK for LHTLP [29]:

1. ZKSetup phase: Let N be an RSA modulus, pp are defined in LHTLP, in-

tervals for the statements are L and B with B < L and let k is the statistical

security constant. Let the input here is the time lock puzzles Z1, . . . , Zl.

2. ZKProve phase: Let wit := ((x1, r1), . . . , (xl, rl)) denote the witness, where

xi ∈ [−B,B] for all i. If Zi ← HTLP.PuzzleGeneration(pp, xi; ri) for any

i, then the ZKProve phase performs the following steps:

(a) Let y1, . . . , yk ← [−L/4, L/4], r′1, . . . , r
′

k be the values of the correspond-

ing ring.

(b) For i = 1, . . . , k calculate Di ← HTLP.PGen(pp, yi; r
′
i).

(c) Calculate (t1, . . . , tk)← H(Z1, . . . , Zl, D1, . . . , Dk), ∀ti ∈ {0, 1}l.

(d) For i = 1, . . . , k, calculate vi ← yi +
∑l

j=1 ti,j.xj and wi ← r
′
i +∑l

j=1 ti,j.rj .

15

(e) Set π ← (Di, vi, wi)i∈[k], provide π.

3. ZKVerify phase:

(a) Calculate (t1, . . . , tk)← H(Z1, . . . , Zl, D1, . . . , Dk).

(b) For i = 1, . . . , k calculate if vi ∈ [−L/2, L/2], then calculate Fi ←
Di.
∏l

j=1 Z
ti,j
j and calculate if Fi = HTLP.PuzzleGeneration(pp, vi;wi).

(c) If all the conditions are satisfied, output 1, else output 0.

2.9.3 Verifiable Timed Signatures (VTS)

Thyagarajan et al. recently proposed [29] efficient versions of VTS for BLS [5],

Schnorr [26] and ECDSA [15]. VTS versions of these algorithms do not require any

modification of signature algorithms, instead, they are chosen as committed signa-

tures in a commitment scheme.

VTS has 4 phases, namely Commit, Vrfy, Open, and ForceOp:

• Commit : (C,π)← Commit(σ,T)

• Vrfy : 0 /1← Vrfy(pk, m, C, σ)

• Open : (σ, r)← Open(C)

• ForceOp : σ← ForceOp(C)

We will include the VTS for the BLS (VT-BLS) because it is the only one that is

pairing-based, and the pairing-based ones will be the focus of this study.

2.9.3.1 Verifiable Timed BLS Signature (VT-BLS):

In order to show how VTS phases are used for BLS, the following VT-BLS [29]

algorithm steps are explained. Note that, n will be used as a security parameter,

threshold t := n/2+1 and |σ| = λ will be the bit-length of σ, H ′ : {0, 1}∗ → I ⊂ [n]

with |I| = t − 1 is a random oracle. As a pairing-based efficient timed signature,

16

VT-BLS uses threshold secret sharing to increase performance. Specifically, it uses a

cut-and-choose protocol to use the threshold value.

• Setup phase: Run ZKSetup(1λ) to generate crsrange. Generate public param-

eters

pp← LHTLP.PuzzleSetup(1λ, T)

and output crs := (crsrange, pp).

• Commit and prove phase: For input (crs, wit), follow the steps.

-wit := σ, crs := (crsrange, pp), pk is the public key generated in the BLS, m

is the message.

-For all i ∈ [t− 1] , sample αi ← Zq and fix σi = H(m)αi and hi := gαi
2 .

-For all i ∈ {t, . . . , n}:

σi =

(
σ∏

j∈[t−1] σ
lj(0)
j

)li(0)
−1

(2.5)

and

hi =

(
pk∏

j∈[t−1] h
lj(0)
j

)li(0)
−1

(2.6)

Here li is the i-th Lagrange Polynomial basis.

-For i ∈ [n], generate puzzles and proofs:

ri ← {0, 1}λ, Zi ← LHTLP.PuzzleGeneration(pp, σi; ri)

and

πrange,i ← ZKProve(crsrange, (Zi, 0, 2
λ, T), (σi, ri))

-Calculate

I ← H ′(pk, (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n)).

-Results are the commitment C := (Z1, . . . , Zn, T) and corresponding range

proof which is

π := (hi, πrange,ii∈[n], I, {σi, ri}i∈I).

17

• Verification phase: (crs, pk,m,C, π) is the input values and the Vrfy algo-

rithm works as follows:

-Parse C := (Z1, . . . , Zn, T), π := (hi, πrange,ii∈[n], I, {σi, ri}i∈I) and crs :=

(crsrange, pp).

-If any of the below conditions are correct, the Vrfy algorithm outputs 0:

1. There is j /∈ I satisfying

∏
i∈I

h
li(0)
i .h

lj(0)
j ̸= pk.

2. There is i ∈ [n] satisfying

ZKVerify(crsrange, (Zi, 0, 2
λ, T), πrange,i) ̸= 1.

3. There is i ∈ I satisfying

Zi ̸= LHTLP.PuzzleGeneration(pp, σi; ri)

or

e(g2, σi) ̸= e(hi, H(m)).

4. I ̸= H ′(pk, (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n)).

• Open phase: The result of the open phase is opening the commitment and

receiving (σ, {ri}i∈[n]). The committer is expected to open at least the puzzles

for the challenge set I chosen by the verifier.

• ForceOp (forced open) phase: This phase takes input C := (Z1, . . . , Zn, T)

and:

-Performs σi ← LHTLP.PuzzleSolve(pp, Zi) for i ∈ [n] and receives all the

signature shares. It should be observed that, given the committer has revealed

t− 1 puzzles, the ForceOp step will only involve solving (n− t+ 1) puzzles.

-Output σ :=
∏

j∈[t](σj)
lj(0) by considering the first t signatures shares are

valid.

18

2.9.4 Verifiable Timed Commitments (VTC)

Verifiable timed commitment (VTC) or verifiable timed dlog (VTD) [28] is used to

generate a timed commitment for a secret value x ∈ Z∗
q satisfying h = gx where h is

a publicly known value and g is a generator of G, which is a group of order q. This

structure of VTC is similar to VTS in terms of steps followed and algorithms used.

• Setup phase: Run ZKSetup(1λ) to generate crsrange, generate public parame-

ters

pp← LHTLP.PuzzleSetup(1λ, T)

and output

crs := (crsrange, pp).

• Commit and prove phase: For a given (crs, wit), follow the steps:

-wit := x, crs := (crsrange, pp), h := gx.

-∀i ∈ [t− 1] , sample xi ← Zq and fix hi = gxi .

-For all i ∈ t, . . . , n compute

xi =

x−
∑
j∈[t]

xj.lj0

 .li(0)
−1 (2.7)

and

hi =

(
h∏

j∈[t] h
lj(0)
j

)li(0)
−1

(2.8)

Here, li is the i-th Lagrange polynomial basis.

-For i ∈ [n]:

ri ← {0, 1}λ, Zi ← LHTLP.PuzzleGeneration(pp, xi; ri)

and

πrange,i ← ZKProve(crsrange, (Zi, a, b, T), (xi, ri)).

-Calculate

I ← H ′(pk, (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n)).

19

-Output the commitment C := (Z1, . . . , Zn, T) and corresponding range proof

π := ({hi, πrange,i}i∈[n], I, {xi, ri}i∈I).

-Final output is (h,C, π).

• Verification phase: Given (crs, h, C, π), the Vrfy works as follows:

-Let C := (Z1, . . . , Zn, T) , crs := (crsrange, pp) and

π := ({hi, πrange,i}i∈[n], I, {xi, ri}i∈I).

-If any of the below conditions are correct, the Vrfy algorithm outputs 0. There-

fore, it is expected that these conditions are wrong.

1. There is j /∈ I satisfying ∏
i∈I

h
li(0)
i .h

lj(0)
j ̸= h.

2. There is i ∈ [n] satisfying

ZKVerify(crsrange, (Zi, a, b, T), πrange,i) ̸= 1.

3. There is i ∈ I satisfying Zi ̸= LHTLP.PuzzleGeneration(pp, xi; ri) or

hi = gxi .

4. I ̸= H ′(pk, (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n)).

• Open phase: The result of the open phase is opening the commitment and

receiving (x, {ri}i∈[n]). The committer is expected to open at least the puzzles

for the challenge set I chosen by the verifier.

• ForceOp (forced open) phase: This phase takes C := (Z1, . . . , Zn, T) and:

-Calculates xi ← LHTLP.PuzzleSolve(pp, Zi) for i ∈ [n] to retrieve all key

shares. It should be observed that, given the committer has revealed t − 1

puzzles, the ForceOp step will only involve solving (n− t+ 1) puzzles.

-Output x :=
∑

j∈[t](xj).lj(0) by considering the first t signature shares are the

expected ones.

20

2.9.5 Security Requirements for VTS and VTC

There are two main security requirements for VTS-VTC schemes: soundness and

privacy. Soundness promises to the user that the ForceOp algorithm will reveal the

committed value after T time, under the given commitment C. All Parallel Random

Access Machine (PRAM) algorithms [29] with run-time less than T can reveal the

committed value using commitment and proof with only a negligible probability. The

formal definitions for VTS and VTC are as follows.

Definition 2 (Soundness/Simulation-soundness of VTS). A VTS scheme is sound if

∀A which are the probabilistic polynomial time adversaries and ∀λ ∈ N, there is a

negligible function negl(λ) that satisfies the following statement:

Pr

 b1 = 1 ∧ b2 = 0 :

(pk,m,C, π, T)← A(1λ)

(σ, r)← ForceOp(C)

b1 := V erification− forV TS(pk,m,C, π)

b2 := V erification− forSignature(pk,m, σ)

 ≤ negl(λ)

.

The concept of simulation-soundness indicates that a prover cannot easily persuade

a verifier of a false statement, even if the prover has the ability to generate many

simulated proofs for statements they desire.

Definition 3 (Privacy of VTS). A VTS scheme can be considered as private if there

exists a PPT simulator S, negl as defined in Definition 2, and a polynomial T̃ satis-

fying ∀ polynomials T > T̃ , the PRAM algorithms A whose running time is at most

t which is smaller than T , ∀m ∈ {0, 1}∗ and ∀λ ∈ N, the following statement is

satisfied: ∣∣∣∣∣∣∣∣∣∣∣
Pr

 A(pk,m,C, π) = 1 :

(pk, sk)← KeyGeneration(1λ)

σ ← SignatureGeneration(sk,m)

(C, π)← Commit(σ, T)

-Pr
[

A(pk,m,C, π) = 1 :
(pk, sk)← KeyGeneration(1λ)

(C, π,m)← S(pk, T)

]

∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

Definition 4 (Soundness/Simulation-soundness of VTC). A VTC scheme is sound if

∀A which are the probabilistic polynomial time adversaries and ∀λ ∈ N, there is a

21

negligible function negl(λ) that satisfies the following statement:

Pr

 b1 = 1 ∧ b2 = 0 :

(h,C, π, T)← A(1λ)

x← ForceOp(C)

b1 := V erification− forV TC(h,C, π)

b2 := (h = gx)

 ≤ negl(λ)

.

Definition 5 (Privacy of VTC). A VTC scheme can be considered as private if there

exists a Probabilistic Polynomial Time(PPT) simulator S, negl as defined in Defini-

tion 2, and a polynomial T̃ satisfying ∀ polynomials T > T̃ , the PRAM algorithms A

whose running time is at most t which is smaller than T , all λ ∈ N and ∀λ ∈ N, the

following statement is satisfied:

Pr

 b′ = b :

x← Z∗
q , h := gx, b← {0, 1}

b = 0⇒ (C, π)← Commit(x, T)

b ̸= 0⇒ (C, π)← S(h, T)

b′ ← A(h,C, π)

 ≤ negl(λ)

.

2.10 Auction Schemes

Auctions play a crucial role in various domains, facilitating transactions by allowing

participants to competitively bid for goods, services, or assets. However, in an in-

creasingly digitized world, the privacy of bids of the participants and digital identities

has become a significant concern [14, 23]. Timed commitments have emerged as a

promising approach for privacy preservation in auction protocols [27].

Auctions are mechanisms in which participants compete by submitting bids to acquire

a particular item. There are typically two categories of auctions: open auctions and

sealed-bid auctions. Open types of auctions are English or Dutch-style auctions which

are bidding by increasing the bid and decreasing the bid respectively. On the other

hand, sealed-bid auctions are either first-price or second-price auctions, which means

the winner pays either the highest price or the second-highest price, respectively. In

this study, we focus on first-price sealed-bid auctions (FPSB). Further details and

explanations can be found in the comprehensive survey [1].

22

2.10.1 Privacy and Security Considerations in Auctions

Preserving privacy and security in auctions involves safeguarding the identities of

the participants, bids, and other confidential information from unauthorized disclo-

sure. Cryptographic protocols and security mechanisms are commonly employed to

achieve this goal while enabling participants to engage in the bidding process.

In an ideal auction protocol, there are several key points [1] that one can consider

even though satisfying all of them is a challenging task. They are given as follows:

• Non-repudiation: Preventing bidders from denying their actions, ensuring that

they cannot later deny truly submitted bids.

• Privacy: Keeping the losing bids unrevealed.

• Verifiability: Enabling the ability to verify and validate the correctness and

accuracy of the auction outcome.

• Secrecy: Employing measures to protect the identity of the participants.

• Robustness: When dealing with parties who are willing to cheat, it is essen-

tial to have a counter strategy in place that effectively prevents their dishonest

actions.

• Fairness: Enhancing public perception and trust in the auction process. Partic-

ipants are more likely to engage and submit competitive bids if they have con-

fidence that the process is fair and unbiased. This, in turn, can lead to increased

participation and more favorable outcomes for both the auction organizer and

participants.

• Anonymity: Maintaining the privacy of the bidder-bid relationship, ensuring

that no indications or traces are left that can link a bidder to their bid.

23

24

CHAPTER 3

VERIFIABLE TIMED COMMITMENT APPLICATIONS

WITHIN SIGNATURE SCHEMES

Considering the usage and the efficiency of VT-BLS, VT-ECDSA, and VT-Schnorr

structures defined for VTS, which other signing algorithms can be used with them is

discussed in this study. Adding accountability to the chosen VTS has been one of our

main motivations. In this context, we chose accountable subgroup multi-signatures

due to their default accountability feature and accountable proxy signatures that have

many applications today. In this section, we explained our proposals for those sig-

nature schemes blended with the VTC concept. While creating these designs, we

slightly modified the existing algorithm structures at some points and made them

suitable for the timed signature/commitment structures.

3.1 Verifiable Accountable Timed Proxy Signatures (VAT-PS)

In this section, we introduce the “Verifiable Accountable Timed Proxy Signatures

(VAT-PS)" which presents three practical construction scenarios for pairing-based

proxy signature schemes. Our scheme focuses on incorporating verifiability, account-

ability, and timed cryptography to define a proxy signature providing all of these prop-

erties in a single scheme. Unlike the traditional proxy signatures, our design brings a

novel approach by using timed commitments during the delegation process or signing

process which allows a design of a proxy signature involving only the original signer

and the proxy signer. That means, there is no need to have a trusted or semi-trusted

third party in such a proxy scheme. Its consideration of verifiability and accountabil-

25

ity makes our proposal a desired digital signature design because it provides better

transparency and traceability. Our proposed scenarios use the delegation by warrant

type of proxy design. The warrant, generated by the original signer, plays a crucial

role in establishing the accountability and trustworthiness of the delegation process in

our scheme. The warrant consists of the membership keys of the users and the infor-

mation about the message to be signed. Moreover, one can observe that our VAT-PS

constructions can be seen as a two-person multi-signature scheme in a sense, consist-

ing of the original signer and the proxy signer. In such schemes, both the membership

key and the individual signature calculation part of the ASM structure proposed by

Boneh et al. [4] are quite suitable. However, instead of using the individual signature

generation of the ASM scheme directly, we slightly modify it to be compatible with

the timed commitments proposed in [29]. The proposed schemes are given under the

following three scenarios.

3.1.1 Scenario 1-VAT-PS by timed delegation

In the first scenario, we aim to allow the original signer to delegate their signing rights

to a proxy signature with a specific condition. The delegation is timed, meaning that

after a specific time T , the proxy signature gains the authority to sign on behalf of

the original signer. This scenario is a pretty suitable use case in order to apply timed

signatures. To achieve this, it is intended that the original signer signs the warrant

with the timed signature and sends it to the proxy signer. In this way, the authority

can only be used in the future. Figure 3.1 shows the high-level construction of the

timed delegation of the signature and the steps are explained below.

1. Key Generation: The original signer and the proxy signer generate their key

pair, (ski, pki) with the same generation procedure as the BLS scheme. For

simplicity, we call the original signer user 1 and the proxy signer as user 2.

Therefore, their key pairs are (sk1, pk1) and (sk2, pk2), respectively.

2. Setup: The setup process uses the ASM group setup parameters and functions

(H0, H1 and H2 are defined such that H0 and H2 map binary strings to G1 and

H1 maps binary strings to Zq.) with an additional function H3 : G1 → Zq.

26

Proxy SignerOriginal Signer

Keys: Keys:

Signing a message:

Receiver

Verifies

Figure 3.1: VAT-PS by Timed Delegation

Therefore, considering one original signer and one proxy signer in the process,

the group setup algorithm works as follows. Both users compute the aggregated

public key

apk ←
2∏

i=1

pk
H1(pki,{pk1,pk2})
i .

Let H1(pki, {pk1, pk2}) be parsed as ai. Calculating the membership keys is

similar to the ASM, both signers have

mki ←
2∏

j=1

µij.

3. (Timed) Delegation: As a part of the delegation process, the original signer

creates a warrant value of w. Later, the original signer computes signO ←
H0(apk, w)

sk1·H3(mk1). This part is the slight modification of ASM signature

generation in order to be compatible with the VT-BLS structure and the same

modification will be used for the other timed proxy constructions as well. Let

k be the value of sk1 · H3(mk1) in Zq. Then, k can be considered as the new

secret key of the original signer. In this case, gk2 = pk′ is the new public key of

the original signer. Since the signO is a BLS signature of apk, w with the new

modified keys of the original signer, it is compatible with the VT-BLS structure.

(a) Setup phase: Run ZKSetup(1λ) to generate crsrange. Generate public

parameters

pp← LHTLP.PuzzleSetup(1λ, T)

and output crs := (crsrange, pp).

(b) Commit and prove phase: For input (crs, wit), follow the steps.

-wit := signO, crs := (crsrange, pp), pk′ is the public key generated as in

the BLS scheme, m is apk, w which is used as a message.

27

-∀i ∈ [t− 1], take αi ← Zq and fix σi = H(m)αi and hi := gαi
2 .

-∀i ∈ {t, . . . , n} calculate:

σi =

(
σ∏

j∈[t−1] σ
lj(0)
j

)li(0)
−1

(3.1)

and

hi =

(
pk
′∏

j∈[t−1] h
lj(0)
j

)li(0)
−1

, (3.2)

-For i ∈ [n], generate puzzles and proofs

ri ← {0, 1}λ, Zi ← LHTLP.PuzzleGeneration(pp, σi; ri)

and

πrange,i ← ZKProve(crsrange, (Zi, 0, 2
λ, T), (σi, ri)),

respectively.

-Calculate

I ← H ′(pk
′
, (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n)).

-Provide the commitment C := (Z1, . . . , Zn, T) and corresponding range

proof which is

π := (hi, πrange,ii∈[n], I, {σi, ri}i∈I).

Therefore, the original signer can compute the VT-BLS of signO to send the

signature to the proxy signer as a verifiable timed signature on the warrant. In

the end, we can consider w as a valid warrant value whose signature can only

be opened after some pre-defined time T and can be verified.

4. Proxy Signature Generation:

Note that, since the warrant is sent in a verifiable manner, the signature of the

warrant and the committed shares of its signature can be verified during the

verification phase before opening the commitments.

28

(a) Verification phase: (crs, pk
′
,m,C, π) is the input values and the Vrfy

algorithm works as follows:

-Define C := (Z1, . . . , Zn, T), π := (hi, πrange,ii∈[n], I, {σi, ri}i∈I) and

crs := (crsrange, pp).

-If any of the conditions listed below are met, the Vrfy algorithm will

produce an output of 0:

i. There is j /∈ I satisfying∏
i∈I

h
li(0)
i .h

lj(0)
j ̸= pk

′
.

ii. There is i ∈ [n] satisfying

ZKVerify(crsrange, (Zi, 0, 2
λ, T), πrange,i) ̸= 1.

iii. There is i ∈ I satisfying

Zi ̸= LHTLP.PuzzleGeneration(pp, σi; ri)

or

e(g2, σi) ̸= e(hi, H(m)).

iv. I ̸= H ′(pk
′
, (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n)).

After time T passes, the proxy signer is able to force open the VTS and

the proxy key (signO, w) can be obtained. There is also another option

that the original signer chooses to provide a mechanism that opens all

the committed values (Open phase) after time T automatically. This is

completely optional and depends on the original signer’s choice.

i. Open phase: The result of the open phase is opening the commit-

ment and receiving (signO, {ri}i∈[n]). In this case, the committer is

expected to open at least the puzzles for the challenge set I chosen

by the verifier.

ii. ForceOp phase: This phase takes input C := (Z1, . . . , Zn, T) and:

-Performs σi ← LHTLP.PuzzleSolve(pp, Zi) for i ∈ [n] and receives

all the signature shares. It should be observed that, given the com-

mitter has revealed t− 1 puzzles, the ForceOp step will only involve

solving (n − t + 1) puzzles. In [29], the possibility of solving one

29

puzzle instead of n− t+1 puzzles is explained in detail with the help

of LHTLP.

-Output signO :=
∏

j∈[t](σj)
lj(0) by considering the first t signatures

shares are valid.

After all the verification of the timed signature is completed, the proxy

signer is ready to sign the messages.

Let m be a message to be signed by the proxy signature on behalf of the

original signer. The proxy signer first calculates g
sk2·H3(mk2)
2 , names it

as p and makes it public. Then, the proxy signer signs m by computing

signP ← H0(apk, w,m)sk2·H3(mk2).

(b) Proxy Signature Verification:

Given the values (signP , apk, w,m, p), the verifier accepts the proxy sig-

nature signP if the equation e(signP , g2) = e(H0(apk, w,m), p) holds.

3.1.2 Scenario 2-VAT-PS by time-bounded delegation

In the second scenario, we aim to allow the original signer to delegate their signing

rights to a proxy signature for a strictly limited duration in a verifiable and account-

able way. Upon expiration of the temporary authorization, the warrant is added to

a public revocation list and should no longer be used. This method can be thought

of as similar to the concept of certificate transparency in digital certificates. Since

the temporary authorization will be public when it is added to the revocation list, it

is assumed that the information it contains is not confidential. In addition, since the

warrant does not have to contain the duration period for the signing rights, we prevent

fraudulent activities over the warrant or the need for a trusted person to check if the

warrant contains the intended time limit. The steps are explained as follows:

1. Key Generation: Same as Scenario 1.

2. Setup: Same as Scenario 1.

3. (Time-bounded) Delegation: As a part of the time-bounded delegation pro-

cess, the original signer generates a warrant value of w. Later, the original

30

signer calculates p = gw2 to make it compatible with the VTC and makes it

public. In the delegation process, the original signer computes the V TC of the

w, publishes it publicly, and sends the original w to the proxy signer from a

secure channel as a secret value, which is similar to Scenario 1 but using VTC

protocol instead of VTS. Note that, we do not consider how to share the warrant

by making it confidential, but we assume that it will be kept secret between the

original signer and the proxy signer until time T passes. After the committed

time T passed, the warrant value is written in a public revocation list. In this

way, the proxy signer will only be eligible to sign messages on behalf of the

original signer before the revocation.

4. Proxy Signature Generation:

Since the warrant is published in a verifiable way, the proxy signer can easily

verify the committed value with the verification step of V TC. Consider the

message m to be signed by the proxy signature, acting on behalf of the original

signer. The proxy signer first calculates p := g
sk2·H3(mk2)
2 , and makes it public.

Then, the proxy signer signs m by computing signP ← H0(apk, w,m)sk2·H3(mk2).

5. Proxy Signature Verification:

Given the values (signP , apk, w,m, p), the verifier accepts the proxy signa-

ture signP if w is not in the revocation list and the equation e(signP , g2) =

e(H0(apk, w,m), p) holds.

Figure 3.2 shows the high-level construction of the time-bounded (i.e. temporal) del-

egation of the signature.

Proxy SignerOriginal Signer

Keys: Keys:

Signing a message:

Receiver

Verifies

T times later

Revocation list

D
ouble check

Figure 3.2: VAT-PS by Time-bounded Delegation

31

3.1.3 Scenario 3-VAT-PS as a timed signature

In the third scenario, we aim to allow the proxy signer to sign documents on behalf

of the original signer but also endow them with the ability to apply timed signatures.

As a delegation rule, the original signer authorizes the proxy signer, but preconditions

that the signature of the message can only be opened after time T . This expectation

can be found in the warrant. The steps are explained as follows:

1. Key Generation: Same as Scenario 1.

2. Setup: Same as Scenario 1.

3. Delegation: As a part of the delegation process, the original signer first pro-

duces a warrant value of w. Then, the original signer computes signO ←
H0(apk, w)

sk1·H3(mk1). Let k := sk1 · H3(mk1) mod q. Then, k can be con-

sidered as the new secret key of the original signer. In this case, r = gk2 is the

new public key of the original signer. The proxy keys to be used during the

proxy signing process are the signature of the warrant and the warrant itself.

4. (Timed) Proxy Signature Generation:

The proxy signer needs to first verify that e(signO, g2) = e(H0(apk, w), r)

holds. The proxy signer then calculates p := g
sk2·H3(mk2)
2 , and makes it public.

Then, the proxy signer signs m by computing signP ← H0(apk, w,m)sk2·H3(mk2).

By using VT-BLS structure for the signP under the new secret key sk2·H3(mk2)

and the new public key p, the proxy signer calculates the timed version of its

signature by using the VT-BLS process, calls it VAT-PS, and sends it to the

receiver.

5. Proxy Signature Verification:

After time T of the VAT-PS passes, the signature can be obtained by ForceOp.

Then, given the values (signP , apk, w,m, p), the verifier accepts the proxy sig-

nature signP if the equation e(signP , g2) = e(H0(apk, w,m), p) holds. Also,

since the commitments are designed as verifiable, the whole signature scheme

and its committed shares are verifiable.

32

Figure 3.3 shows the high-level construction of the timed proxy signature construc-

tion.

Proxy SignerOriginal Signer

Keys: Keys:

Signing a message:

Receiver

ForceOpen
After time

Figure 3.3: VAT-PS as a Timed Signature

3.1.4 Security Analysis of VAT-PS Schemes

We provide the security requirements for our proposals, used for proxy signature

schemes and verifiable timed commitments/signatures.

3.1.4.1 VTS/VTC Security:

The security analysis of VTS/VTC is explained here:

Scenario 1:

• Theorem 1 (Soundness). It can be inferred that if LHTLP is a time-lock puz-

zle with perfect correctness, then Scenario 1 outlined in Figure 3.1 meets the

soundness requirements set forth in Definition 2, assuming the random oracle

model.

• Theorem 2 (Privacy). It is asserted that if LHTLP is a secure time-lock puzzle,

then Scenario 1 outlined in Figure 3.1 meets the privacy requirements outlined

in Definition 3 within the random oracle model.

The proofs can be found in Appendix A.1 and A.2, respectively.

Scenario 2:

33

• Theorem 3 (Soundness). It can be inferred that if LHTLP is a time-lock puz-

zle with perfect correctness, then Scenario 2 outlined in Figure 3.2 meets the

soundness requirements set forth in Definition 4, assuming the random oracle.

• Theorem 4 (Privacy). It is asserted that if LHTLP is a secure TLP, then Sce-

nario 2 outlined in Figure 3.2 meets the privacy requirements outlined in Defi-

nition 5 within the random oracle model.

The proofs can be found in Appendix A.3 and A.4, respectively.

Scenario 3:

• Theorem 5 (Soundness). It can be inferred that if LHTLP is a time-lock puz-

zle with perfect correctness, then Scenario 3 outlined in Figure 3.3 meets the

soundness requirements set forth in Definition 2, assuming the random oracle

model.

• Theorem 6 (Privacy). It is asserted that if LHTLP is a secure TLP, then Sce-

nario 3 outlined in Figure 3.3 meets the privacy requirements outlined in Defi-

nition 3 within the random oracle.

These are very similar to ones given in Appendix A.1 and A.2, respectively.

The theorems play a crucial role in verifying the security of the timed commitments

that form the foundation of the proposed schemes. Alternatively, when assessing

the proposed schemes based on broader considerations, we can make the following

considerations:

3.1.4.2 Verifiability:

Verifiability is one of the most important requirements while designing digital sig-

nature schemes. Observe that, since we use verifiable timed commitments in each

proposal, the committed values are already verifiable by default verifiability property

34

of the VTS/VTC. We prove the verifiability of the proxy signature itself as follows:

Scenario 1: Given (signP , apk, w,m, p), signP should hold the equation

e(signP , g2) = e(H0(apk, w,m), p).

We can show its correctness as follows:

e(H0(apk, w,m), p) = e(H0(apk, w,m), g
sk2·H3(mk2)
2)

= e(H0(apk, w,m)sk2·H3(mk2), g2)

= (signP , g2).

Note that, since Scenario 2 and 3 use a similar signing algorithm, their verification

can be shown in a similar way.

3.1.4.3 Strong Unforgeability:

In all of the proposed scenarios, we use a group setup process that is used to create

membership keys for the original signer and proxy signer. Since the private key of

the original signer is used when generating the proxy signer’s membership key, and

the private key of the proxy signer is used in the signing process, no one other than

the proxy signer can generate this signature. Even the original signer cannot create

the proxy signature since it requires the private key of the proxy signer.

3.1.4.4 Strong Undeniability:

In all of the proposed scenarios, the warrant w contains the membership keys and

determines the involvement of the original and proxy signers. Also, since the aggre-

gated public key apk, which is produced by the public keys of both users, is used to

verify the signature, our schemes provide the undeniability property.

35

3.1.4.5 Strong Identifiability:

All verification processes need apk and the warrant values. Also, the warrant contains

the membership key of the proxy signer which provides identifiability.

3.1.4.6 Prevention of Misuse:

Since the warrant contains the information about the message to be signed and the

responsibility of the proxy signer, the misuse of the proxy signer is prevented in our

schemes. The warrant is used in the verification process, therefore anyone can check

if the information is valid or not.

3.1.5 Computational Complexity of VAT-PS Schemes

In this section, we calculate the computational complexity of the proposed VAT-PS

algorithms and two recently proposed pairing-based proxy signature schemes [19,31].

Considering that there exists no proxy signature scheme constructed using verifiable

timed commitments with the time lock puzzles, the complexity of the commitment

creation process counts as an extra cost. The comparison of those algorithms shows

that our proposed schemes bring more complexity in terms of computation because

of the timed commitment calculation complexity. However, our schemes provide

additional transparency and traceability which make them more suitable for some

use cases in decentralized infrastructures such as blockchain. In addition, VT-BLS

[29] offers the advantages of homomorphism while creating time lock puzzles. This

opportunity lets the receiver of the puzzles solve one single puzzle instead of more

during the ForceOp phase. Therefore, we believe that our proposal is quite suitable

for specific environments. The following notations are used in Table 3.1:

• We calculate the complexity of the delegation, delegation verification, signature

generation, and verification steps to compare our results with [19, 31]. Note

that, we decided to separate the delegation verification step since it brings ad-

ditional cost when the delegation values themselves need to be checked.

36

• We also mention the revocation mechanism used in the proposed schemes and

the articles to highlight where the delegation and signing period is given.

• TH is the number of hash queries for H0, H1, H2, H3.

• TSM is the time complexity for scalar multiplication.

• TMM is the time complexity for modular multiplication.

• Tpair is the time complexity for pairing operation for e.

• TExp is the time complexity for modular exponentiation.

• TI is the time complexity for the modular inverse.

• TV TSC
is the time complexity for the VT-BLS commit and prove phase.

• TV TSV
is the time complexity for the VT-BLS verification phase.

• TV TCC
is the time complexity for the VTC commit and prove phase.

• TV TCV
is the time complexity for the VTC verification phase.

3.2 Verifiable Timed Multi-signatures

In this section, we propose timed versions of multi-signature schemes within alterna-

tive scenarios. For simplicity, MSP is chosen as the starting point to construct a timed

version of a multi-signature. However, timed versions of ASM schemes are the main

focus of this work. At first, we present a variant of MSP that requires users to create

VTS of their own signatures. Then, we will construct a modified version of the ASM

scheme, namely mASM, by slightly modifying Boneh et al.’s ASM scheme, which is

useful for constructing VTC on membership keys.

3.2.1 Verifiable Timed Multi-signature Protocol (VT-MSP-v1)

The concept revolves around creating a multi-signature on a message m by using

VTS. To construct such a scheme, users create their own signatures by MSP, see (2.2)

37

Table 3.1: Computational complexity of the proposed VAT-PS schemes and recent
proposals for pairing-based proxy signature schemes

Proxy
Signature
Schemes

[19] [31] Our
Scenario 1

Our
Scenario 2

Our
Scenario 3

Delegation 1TH 1TSM +

1TH

1TSM +

2TH +

1TV TSC

1TExp +

1TV TCC

1TSM +

2TH +

1TExp

Delegation
Verifica-

tion

1TH 2TExp +

1TH

1TV TSV
1TV TCV

2TExp +

1TH

Proxy
Signature
Genera-

tion

3TExp +

1TMM +

1TH +

N.TSM

1TSM +1TI 1TSM +

2TH +

1TExp

1TSM +

2TH +

1TExp

2TSM +

2TExp +

3TH +

1TV TSC

Proxy
Signature
Verifica-

tion

5TExp +

2TH +

N.TSM

2TExp +

1TSM +

1TH

2TExp +

1TH

2TExp +

1TH

2TExp +

TV TSV

Revocation By the
warrant

By the
warrant

By the
V TS

By the
V TC

By the
V TS

and put them in a VTS protocol to make sure that the combiner can only receive

the valid signatures after some predefined time T . Note that, since the signature

generation for individual users is similar to BLS, VT-MSP-v1 is very similar to VT-

BLS except that the initial [t− 1] signature parts are assigned as follows:

-∀i ∈ [t − 1], αi
$← Zq and fix σi = H(m)ai·αi and hi := gαi

2 where ai =

H1(pki, {pk1, . . . , pkn}). This selection does not change the calculation of the rest

of the shares, therefore the rest of the shares are defined as (A.2) and (3.6).

Each user except one can define his/her own time t ≤ T to lock the signatures.

However, if the requirement is to produce a multi-signature after some predefined

time T , at least one user should lock his/her signature with time T . Once the time

T has passed, the combiner can obtain all the individual signatures and calculate the

multi-signature. In other words, the combiner calculates

σ =
n∏

j=1

σi.

38

User 1

Sign_1

VTS

Sign_1

User 2

Sign_2

VTS

Sign_2

User 3

Sign_3

VTS

Sign_3

User n

Sign_n

VTS

Sign_n

...

Combiner creates multi-signature

Figure 3.4: VT-MSP-v1

If anyone wants to verify the created multi-signature, they can use the below verifica-

tion:

e(H0(m), apk) = e(σ, g2). (3.3)

In addition, the individual signatures generated can be checked by the VTS verifica-

tion phase. Thus, it is possible to verify both the individual signatures and the multi-

signature created by the combiner using the same public keys. Figure 3.4 shows the

high-level construction of VT-MSP-v1.

3.2.1.1 Security of VT-MSP-v1:

The security of VT-MSP-v1 depends on the LHTLP and the unforgeability of the

multi-signature as given in the theorems below.

• Theorem 7 (Soundness). It can be inferred that if LHTLP guarantees per-

fect correctness, then VT-MSP-v1 outlined in Figure 3.4 meets the soundness

requirements set forth in Definition 2.

• Theorem 8 (Privacy). It is asserted that if LHTLP is a secure time-lock puzzle,

then VT-MSP-v1 outlined in Figure 3.4 meets the privacy requirements outlined

in Definition 3.

The proofs of Theorems 7 and 8 are similar to the ones in Appendix A.1, A.2.

39

3.2.2 Verifiable Timed Multi-signature Protocol - VT-MSP-v2

Version 2 of VT-MSP is similar to version 1. However, in this version, we would

like to use 1 VTS instead of n by making the combiner responsible for the timed

signature. Let us consider a payment signed by a company’s board of directors that

is requested to reach the recipient after time T passes. In such cases, sending the

produced multi-signature with the help of timed commitments is beneficial in terms

of both verifiability and efficiency.

In this scheme, first, users create their individual signatures using the MSP signature

generation scheme. After that, the combiner creates multi-signature by calculating

σ =
n∏

j=1

σi =
n∏

j=1

H0(m)ajskj = H0(m)a1sk1+...+anskn . (3.4)

Since σ needs to be created as a timed signature, the combiner takes

a1sk1 + . . .+ anskn

and calls it sec. After that, the combiner creates VTS of the multi-signature as fol-

lows:

• Setup phase: Run ZKSetup(1λ) to generate crsrange. Generate public param-

eters

pp← LHTLP.PuzzleSetup(1λ, T)

and output crs := (crsrange, pp).

• Commit: For input (crs, wit), follow the steps.

-wit := σ, crs := (crsrange, pp), pk is the public key value gsec2 created and

published by the combiner, m is the message.

-∀i ∈ [t− 1] , seci
$← Zq and fix σi = H(m)seci and hi := gseci2 .

-∀i ∈ {t, . . . , n} compute:

σi =

(
σ∏

j∈[t−1] σ
lj(0)
j

)li(0)
−1

(3.5)

40

and

hi =

(
pk∏

j∈[t−1] h
lj(0)
j

)li(0)
−1

. (3.6)

-∀i ∈ [n], calculate puzzles and corresponding proofs:

ri ← {0, 1}λ, Zi ← LHTLP.PuzzleGeneration(pp, σi; ri)

and

πrange,i ← ZKProve(crsrange, (Zi, 0, 2
λ, T), (σi, ri)).

-Calculate

I ← H ′(pk, (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n)).

-Publish the commitment and corresponding range proof which is

π := (hi, πrange,ii∈[n], I, {σi, ri}i∈I).

• Vrfy: (crs, pk,m,C, π) is the input values and the Vrfy algorithm works as

follows:

-Assign C := (Z1, . . . , Zn, T), π := (hi, πrange,ii∈[n], I, {σi, ri}i∈I) and crs :=

(crsrange, pp).

-If any of the below conditions are correct, the Vrfy algorithm outputs 0:

1. There is j /∈ I satisfying ∏
i∈I

h
li(0)
i .h

lj(0)
j ̸= pk.

2. There is i ∈ [n] satisfying

ZKVerify(crsrange, (Zi, 0, 2
λ, T), πrange,i) ̸= 1.

3. There exists i ∈ I satisfying

Zi ̸= LHTLP.PuzzleGeneration(pp, σi; ri)

or

e(g2, σi) ̸= e(hi, H(m)).

41

User 1

Sign_1

User 2

Sign_2

User 3

Sign_3

User n

Sign_n

VTS(MultiSign)

Combiner creates MultiSign with MSP

...

MultiSign

VTS can be opened
after some time T

Figure 3.5: VT-MSP-v2

4. I ̸= H ′(pk, (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n)).

• Open: The combiner is expected to open at least the puzzles for the challenge

set I chosen by the verifier. Otherwise, the commitments can be opened within

the force open phase similar to VT-BLS.

As it is seen, the combiner can create a timed multi-signature when it is authorized

both to create a multi-signature and to time this signature. What should be noted here

is that it can be easily verified that the integrity of the whole process is preserved and

that the signature has not been changed, even though it seems that the combiner has

been given too much authority. Figure 3.5 shows our high-level construction of MSP

with VTS as a Version 2.

3.2.2.1 Security of VT-MSP-v2:

The security of VT-MSP-v2 depends on the LHTLP and the unforgeability of the

multi-signature as given in the theorems below.

• Theorem 9 (Soundness). Assuming the random oracle model, if LHTLP is

a time-lock puzzle with perfect correctness, then the VT-MSP-v2 scheme de-

picted in Figure 3.5 satisfies the soundness criteria outlined in Definition 2.

42

• Theorem 10 (Privacy). If LHTLP is a secure time-lock puzzle, then VT-MSP-

v2 outlined in Figure 3.5 meets the privacy requirements outlined in Definition

3.

The proofs of Theorems 9 and 10 are similar to the ones in Appendices A.1, A.2

respectively.

3.2.3 Verifiable Timed Accountable Subgroup Multi-signatures

3.2.3.1 Modified Accountable Subgroup Multi-signatures:

Boneh et al. showed that their ASM construction is efficient and applicable in block-

chain cryptosystems. In this section, two modified versions of ASM are introduced.

The modified versions of the ASM scheme, namely mASM-v1 and mASM-v2, are

similar to the ASM scheme until individual signature generation.

mASM-v1:

Individual signatures in the mASM-v1 scheme are calculated as follows:

• SignatureGen: Let H3 be defined as an additional function that maps elements

from G1 to Zq. A signer i calculates his own signature as:

si = H0(apk,m)ski·H3(mki) (3.7)

and delivers si and pk
H3(mki)
i to the combiner. Note that, the aim of this modi-

fication is creating a similar structure with VT-BLS to make it easily adaptable

to the timed version.

• Signature Aggregation: The individual signatures let the combiner construct the

set of signers S ⊆ G. After that, the combiner calculates the ASM σ = (s, pk)

where s =
∏

i∈S si and pk =
∏

i∈S pk
H3(mki)
i .

• Verification: With having (par, apk, S,m, σ), anyone can check if:

e(H0(apk,m), pk) = e(s, g2)

43

• Theorem 11 (Unforgeability). mASM-v1 is an unforgeable multi-signature

scheme under the computational co-Diffie-Hellman problem in the random-

oracle model.

The proof Theorem 11 is similar to the proof of MSP [4].

mASM-v2:

Another modified version of ASM is introduced with authentication of the subgroup.

In this case, we want the subgroup to be known from the beginning by creating

subgroup-specific membership keys instead of membership keys. To make the scheme

simpler, individual signatures can be calculated as follows:

• SignatureGen: i ∈ S calculates his own signature as:

si = H0(apk,m)ski·H3(smki), (3.8)

where smki is defined as the subgroup-specific membership key and equal to∏
j∈S µij , where µij is defined in (2.4). Also, H3 is a function as defined in

mASM-v1. Then, she sends si and pk
H3(smki)
i to the combiner.

• Signature Aggregation: By utilizing the individual signatures, the combiner

can compute the subgroup multi-signature σ = (s, pk), where s =
∏

i∈S si and

pk =
∏

i∈S pk
H3(smki)
i .

• Verification: With having par, apk, pk, S,m, σ, anyone can check if

e(H0(apk,m), pk) = e(s, g2).

• Theorem 12 (Unforgeability). mASM-v2 is an unforgeable multi-signature

scheme under the computational co-Diffie-Hellman problem in the random-

oracle model.

The proof Theorem 12 is similar to the proof of MSP [4].

44

3.2.3.2 VTC with mASM-v1 (VT-mASM-v1):

Although both mASM modifications proposed are suitable to be timed, we explained

the timed mASM-v1 here as an idea, due to the similarities of the schemes. VTC

usage in mASM-v1 allows a user to send her membership key to the combiner so that

the combiner can only receive individual membership keys after some predefined time

T . In this way, membership keys will not be public at the beginning of the protocol

but a combiner will be able to use them to construct a multi-signature on behalf of a

group of n people. The following steps show how a user sends her mk with VTC. For

simplicity, assume that a user has membership key mk and membership key shares

are defined as mki.

• Setup phase: Same as VTC Setup phase.

• Commit: For input (crs, wit):

-Parse wit := sk ·H3(mk), crs := (crsrange, pp), h := gsk·H3(mk).

-∀i ∈ [t− 1], sk′
i

$← Zq of the form sk ·H3(mk) and set h′
i = gsk

′
i .

-∀i ∈ t, . . . , n, compute

sk′
i =

sk ·H3(mk)−
∑
j∈[t]

sk′
j.lj0

 .li(0)
−1

and

h′
i =

(
h∏

j∈[t] h
′lj(0)
j

)li(0)
−1

,

where li is the i-th Lagrange polynomial basis.

-For i ∈ [n], calculate puzzles and corresponding range proofs:

ri ← {0, 1}λ, Zi ← LHTLP.PuzzleGeneration(pp, sk′
i; ri)

and

πrange,i ← ZKProve(crsrange, (Zi, a, b, T), (sk
′
i, ri)).

45

- Set

I ← H ′(pk, (h′
1, Z1, πrange,1), . . . , (h

′
n, Zn, πrange,n)).

-Output the commitment C := (Z1, . . . , Zn, T) and corresponding range proof

which is

π := ({h′
i, πrange,i}i∈[n], I, {sk′

i, ri}i∈I).

-Final output is (h,C, π).

• Vrfy: By using (crs, h, C, π), the Vrfy algorithm works as follows:

-Let C := (Z1, . . . , Zn, T),

crs := (crsrange, pp) and π := ({h′
i, πrange,i}i∈[n], I, {sk′

i, ri}i∈I).

-If any of the below conditions are correct, the Vrfy algorithm outputs 0. There-

fore, the expectation is that these conditions are wrong.

1. There is j /∈ I satisfying ∏
i∈I

h
′li(0)
i .h

′lj(0)
j ̸= h.

2. There is i ∈ [n] satisfying

ZKVerify(crsrange, (Zi, a, b, T), πrange,i) ̸= 1.

3. There is i ∈ I satisfying Zi ̸= LHTLP.PuzzleGeneration(pp, sk′
i; ri) or

hi = gsk
′
i .

4. I ̸= H ′(pk, (h′
1, Z1, πrange,1), . . . , (h

′
n, Zn, πrange,n)).

• Open: The result of the open phase is opening the commitment and receiving

(sk ·H3(mk), {ri}i∈[n])). The combiner is expected to open at least the puzzles

for the challenge set I chosen by the verifier.

• ForceOp: This phase takes C := (Z1, . . . , Zn, T) and then performs the fol-

lowing steps.

-Calculates sk′
i ← LHTLP.PuzzleSolve(pp, Zi) for i ∈ [n] to retrieve all mem-

bership key shares. It should be observed that, given the committer has revealed

t− 1 puzzles, the ForceOp step will only involve solving (n− t+ 1) puzzles.

-Publish sk · H3(mk) :=
∑

j∈[t](sk
′
j).lj(0) by considering the initial t shares

are correct.

46

In this scenario, a combiner cannot change the membership keys as they are received

within a verifiable commitment and are related to the user’s secret keys. Also, a com-

biner cannot create an invalid multi-signature on behalf of a group of n people, as

verification of the multi-signature requires aggregated public keys of users which can

be verified by any person. Note that, since the combiner needs to choose subgroup S

to create mASM, she does not have to calculate all individual signatures of users. She

can only calculate the signatures of a subgroup which decreases computational load.

Also, since multi-signature is defined as the multiplication of individual signatures

in the subgroup, the combiner can first calculate the sum of membership keys of the

chosen subgroup and use it to calculate multi-signature. This method can be consid-

ered a delegated multi-signature scheme. VT-mASM-v1 can also be reconstructed

if the subgroup is known from the beginning of the protocol. Figure 3.6 shows the

high-level construction of VT-mASM-v1.

User 1

sk_1.H_3(mk_1)

VTC

sk_1.H_3(mk_1)

User 2

sk_2.H_3(mk_2)

VTC

sk_2.H_3(mk_2)

User 3

sk_3.H_3(mk_3)

VTC

sk_3.H_3(mk_3)

User n

sk_n.H_3(mk_n)

VTC

sk_n.H_3(mk_n)

Combiner creates mASM

...

Sign_1 Sign_2 Sign_3 Sign_n

Combiner receives values of the
form sk_i.H_3(mk_i) after time T

and creates
individual signatures on behalf of

users

Combiner chooses a
subgroup S and uses only
their signatures to create

mASM

Figure 3.6: VT-mASM-v1

3.2.3.3 Security of VT-mASM-v1:

• Theorem 13 (Soundness). If LHTLP is a time-lock puzzle with perfect cor-

rectness, then VT-mASM-v1 illustrated in Figure 3.6 meets the soundness re-

47

quirements set forth in Definition 4, assuming the random oracle model.

• Theorem 14 (Privacy). If LHTLP is a secure time-lock puzzle, then VT-

mASM-v1 outlined in Figure 3.6 meets the privacy requirements outlined in

Definition 5.

The proofs of Theorems 13 and 14 are similar to those given in Appendices A.3, A.4,

respectively.

3.2.4 Verifiable Accountable Timed Proxy Multi-signatures (VAT-PMS):

Proxy multi-signature is a cryptographic mechanism that allows a proxy signer to

sign messages or transactions on behalf of multiple original signers. Instead of each

original signer individually signing a message, the proxy entity holds the necessary

private keys and generates a collective signature. In other words, it is similar to proxy

signatures, but instead of one original signer, we have more than one original signer.

It is particularly useful in scenarios where multiple signers need to delegate their

signing power to a trusted intermediary.

A timed version of proxy multi-signatures can be constructed similarly to the proxy

signatures. As an example, we construct a timed version of a proxy multi-signature

scheme using mASM-v1 suggested above as a multi-signature within Scenario 3 of

the proxy signature.

3.2.4.1 VAT-PMS as a timed signature:

In this scheme, we aim to allow the proxy signer to sign documents on behalf of a

group of original signers but also endow them with the ability to apply timed signa-

tures. Before the delegation, a warrant is assumed to be created and it needs to be

signed by a group of original signers. In this one-time multi-signature creation of the

warrant, we choose mASM-v1. While creating mASM over the warrant, wlog, we

assume that original signer 1 is the combiner of the mASM who interacts with the

proxy signer. As a delegation rule, the original signers authorize the proxy signer, but

48

preconditions that the signature of the message can only be opened after time T . This

expectation can be found in the warrant. The steps are explained as follows:

1. Key Generation: Let o1, . . . , on be the list of n-original signers, and let P be

the n + 1-th signer, who is a proxy signer. The original signers generate their

key pair (ski, pki) and the proxy signer generates his key pair skn+1, pkn+1

with the same key generation procedure as the BLS scheme. For simplicity, we

delegate "the combiner rights" to o1. Therefore, the key pairs of o1 and P are

(sk1, pk1) and (skn+1, pkn+1), respectively.

2. Setup: The setup process uses the ASM group setup parameters and functions

(H0, H1 and H2 are defined such that H0 and H2 map binary strings to G1 and

H1 maps binary strings to Zq.) with an additional function defined as H3 :

G1 → Zq. Therefore, considering n original signers and one proxy signer in

the process, the group setup algorithm works as follows. All users compute the

aggregated public key

apk ←
n+1∏
i=1

pk
H1(pki,{pk1,...,pkn+1})
i .

Let H1(pki, {pk1, . . . , pkn+1}) be parsed as ai. Calculating the membership

keys is similar to the ASM, both the original signers and the proxy signer have

mki ←
n+1∏
j=1

µij.

3. Delegation: As a part of the delegation process, the original signers first pro-

duce and agree on a common warrant value of w. After that, n original signers

create their own signature σi = H0(apk, w)
ski·H3(mki) and pk

H3(mki)
i . Then,

sends them to the combiner, which is o1 in our case. o1 first forms the set of

signers S ⊆ G. Then, she computes the aggregated subgroup multi-signature

σ = (mASMO, pk) where mASMO =
∏

i∈S σi and pk =
∏

i∈S pk
H3(mki)
i .

Here, mASMO is the signature of the warrant and it is sent by the o1 to the

proxy signer.

4. (Verifiable Accountable Timed) Proxy Multi-Signature Creation:

The proxy signer needs to first verify that the warrant and its signature are

indeed valid, i.e. e(mASMO, g2) = e(H0(apk, w), pk) holds. The proxy signer

49

then calculates p := g
skn+1·H3(mkn+1)
2 , and makes it public. Then, the proxy

signer signs m by computing

signP ← H0(apk, w,m)skn+1·H3(mkn+1).

By using VT-BLS structure for the signP under the new secret key skn+1 ·
H3(mkn+1) and the new public key(p) as g

skn+1·H3(mkn+1)
2 , the proxy signer

calculates the timed version of its signature by using VT-BLS process and calls

it VAT-PMS and sends it to the receiver. It can be noticed here that the signing

process is accountable, delegated to the proxy signer by the original signers,

and the proxy multi-signature is created.

5. (Verifiable Accountable Timed) Proxy Multi-Signature Verification:

After time T of the VAT-PMS passed, the signature can be obtained by the open

or force open. Then, given the values (signP , apk, w,m, p), the verifier accepts

the proxy signature signP if the equation e(signP , g2) = e(H0(apk, w,m), p)

holds. Also, since the commitments are designed as verifiable, the whole sig-

nature scheme and its committed shares are verifiable.

Figure 3.7 shows the high-level construction of the timed proxy signature construc-

tion.

Proxy Signer

Original Signers

Combiner Keys: Keys:

Signing a message:

Receiver

ForceOpen
After time

Combiner(Original signer 1) creates
 mASM-v1 of the warrant:

Figure 3.7: VAT-PMS

As seen in VAT-PMS, the mASM creation process is delegated to one of the original

signers. Here, it is aimed to make a more efficient design, and the structure in Scenario

3 is tried to be preserved by determining the person in charge to hand the delegation

process to the proxy signer. It is possible to construct different schemes where mASM

is created by a different combiner (someone not from the original signer group) or

other multi-signature protocols can be used except mASM.

50

3.2.4.2 Security of VAT-PMS:

• Theorem 15 (Soundness). If LHTLP is a time-lock puzzle with perfect cor-

rectness, then VT-mASM-v1 illustrated in Figure 3.7 meets the soundness re-

quirements set forth in Definition 2, assuming the random oracle model.

• Theorem 16 (Privacy). If LHTLP is a secure time-lock puzzle, then VT-

mASM-v1 outlined in Figure 3.7 meets the privacy requirements outlined in

Definition 3.

The proofs of Theorems 15 and 16 are similar to the ones in Appendices A.1, A.2,

respectively.

3.2.5 Performance Evaluation:

In this section, we calculate the time complexity of the VT-BLS algorithm [29] and

our proposed VT-based multi-signature schemes. The complexity of VT-BLS was

calculated with our notation to understand how much more calculation would be

needed to create a verifiable timed multi-signature using the method in a pairing-

based verifiable timed signature algorithm. This comparison makes sense since all of

our proposed VT-based schemes are also pairing-based and considering pairing is an

expensive operation compared to other digital signature schemes (Schnorr, ECDSA,

etc.) decreasing the pairing amount is an important improvement. Some operations

are assumed to have relatively low computational complexity and are therefore ig-

nored.

Note that, n is the number of users to join multi-signature and s is the subgroup size

for ASM. TH is the total hash queries for H0, H1, H2, H3. TG is the time complexity

for group set-up queries. TS is the time complexity for signing queries. Tpair is

the time complexity for pairing operation for e. TExp1 is the time complexity for

exponentiation in G1. TExp2 is the time complexity for exponentiation in G2. TMExp1

is the time complexity for multi-exponentiation in G1. TMExp2 is the time complexity

for multi-exponentiation in G2. TV TSC
is the time complexity for VTS Commit and

Prove phase. TV TSV
is the time complexity for the VTS Verification phase. TV TCC

is

51

Table 3.2: Computational complexity of VT-BLS and proposed VT-based multi-
signature schemes

VT-BLS [29] TH .TExp1 + Tpair + TV TSC
+ TV TSV

VT-MSP-v1 TH .TExp1 + TS.(TMExp2 + TExp1) + TMExp2 + Tpair +

n.(TV TSC
+ TV TSV

)

VT-MSP-v2 TH .TExp1 + TS.(TMExp2 + TExp1) + TMExp2 + Tpair +

(TV TSC
+ TV TSV

)

VT-mASM-v1 TH .max(nTMExp2 + 2TExp1) + TG.(n− 1)TExp1 +

TS.(TMExp2 + TExp1) + Tpair + 3TMExp1 + n.(TV TCC
+

TV TCV
)

VAT-PMS TH .max(nTMExp2 + 3TExp1) + TG.(n− 1)TExp1 +

TS.(TMExp2 + TExp1) + Tpair + 3TMExp1 + (TV TSC
+

TV TSV
)

the time complexity for VTC Commit and Prove phase. TV TCV
is the time complexity

for the VTC Verification phase.

Table 3.2 illustrates the extent to which our constructions introduce additional costs to

covert VT-based signatures into a VT-based multi-signature. Considering the amount

of puzzle generation, the computationally feasible proposed multi-signature scheme

is obviously VT-MSP-v2 since it only uses 1 VTS. VT-MSP-v2 only brings

TS.(TMExp2 + TExp1) + TMExp2 + Tpair

as an additional cost to convert VT-signature (VT-BLS) into VT-multi-signature. VT-

MSP-v1 and VT-mASM algorithms are computationally expensive, but they would

also be useful in such scenarios where each user wants her signature to be opened

after some time t.

52

CHAPTER 4

VERIFIABLE TIMED COMMITMENTS FOR FAIR SEALED

BID AUCTIONS

Ensuring fairness and transparency in sealed bid auctions is crucial for maintaining

trust and encouraging participation. This chapter explores the potential of verifiable

timed commitments as a solution to address these concerns. By utilizing crypto-

graphic techniques and time-stamping mechanisms, verifiable timed commitments

offer a secure and tamper-proof method for participants to submit their bids while

keeping the bid values concealed until a predefined deadline. This approach ensures

bid privacy and facilitates a fair and accountable auction process. The ability to ver-

ify the integrity and timing of commitments empowers both auction organizers and

participants to ensure that the auction is conducted in a trustworthy manner.

4.1 Proposed Auction Scheme

In this case, we offer a two-stage auction design. The first part includes the signing

of the contract, which includes the rules created by the seller including punishment.

The contract is signed by a multi-signature protocol in order to ensure the account-

ability of all participants, consisting of auctioneers and bidders. The second part

is the integration of verifiable timed commitments as a novel approach to enhance

the trust, fairness, and efficiency of first-price sealed bid auctions. By incorporating

verifiable timed commitments into the auction process, participants will be able to in-

dependently verify the validity and integrity of commitments made by other bidders,

ensuring a fair and trustworthy auction environment. The approach is conducting

53

evaluations to assess the trust, verifiability, and practicality of the proposed mecha-

nism.

4.1.1 Stage 1: Signing the contract of the auction

It is assumed that a contract is a document that includes material penal provisions in

case of non-compliance and is prepared in accordance with the law upon the seller’s

request. In this stage, there are mainly three parties: the seller, the auctioneer, and the

bidders. Figure 4.1 shows the high-level construction of producing a multi-signature

over a contract that contains a set of rules for the auction. Using similar notations in

the preliminaries, the process is explained as follows:

1. Assume that the scheme has a trusted infrastructure in terms of the creation of

the required parameters.

2. Seller holds an auction contract, namely M , and sends it to the auctioneer.

Assume that M is smaller than N where N is the RSA modulus.

3. Auctioneer receives M , calculates RSA keys (e0, d0) from the RSA key genera-

tion algorithm by considering N > M , and signs the contract. Sign(A) = hd0

mod N , where h = Hash(M). Then, sends the signature to the n-bidders.

4. Each bidder i receives his/her key pair from BLS key generation algorithm

(ski, pki = gski2). A combiner (any bidder) aggregates the public keys and

individual signatures are generated as

σi = H0(Sign(A))
ai·ski .

5. Seller receives the individual signatures and composes the multi-signature by

MSP protocol

σ =
n∏

j=1

σj.

6. Verification can be tested by anyone who has (Sign(A), apk,H0, σ) during the

auction process by e(σ, g−1
2) · e(H0(Sign(A), apk)) = 1GT

.

54

Seller
A

Auctioneer

Sign(A)

RSA signature

Sign(B_1)

MSP individual signature

Sign(B_2)

MSP individual signature

Sign(B_3)

MSP individual signature

Bidder 1(B_1) Bidder 3(B_3)Bidder 2(B_2) Bidder n(B_n)

Sign(B_n)

MSP individual signature

MSP over the Sign(A)
= MSign

Contract(Rules of the Auction)=M

Figure 4.1: Signing the contract

The aim of Stage 1 is to mainly satisfy the accountability of the participants on the

auction contract by creating a multi-signature in order to be verified efficiently by

someone knowing (par, apk, s0, σ). The way the multi-signature was created is in-

spired by a very recent article by Kara et al. in [16] both considering efficiency and

making the auctioneer dependent on bidders and bidders on auctioneers. The reason

we use both RSA signature and MSP together here is to take advantage of both algo-

rithms. More precisely, the use of RSA parameters by the auctioneer allows the same

infrastructure to be used both for signing the contract by the auctioneer and for en-

crypting bids. On the other hand, MSP, in terms of enabling public key aggregation,

allows a bidder group to jointly sign a contract even if they do not trust each other.

4.1.2 Stage 2: Bidding phase with VTC

In this stage, there are mainly two parties: the auctioneer, and the bidders. Figure 4.2

shows the high-level construction of producing a VTC over an encrypted bid. Using

similar notations in the preliminaries, the process is explained as follows:

1. Each bidder i chooses a bid amount Bi. Assume that Bi < N . This is made

55

possible by the seller setting the maximum amount as well as the minimum

amount from the very beginning.

2. Each bidder i uses the RSA public key of the auctioneer (i.e. e0) to encrypt the

bid values

E(Bi) = Be0
i = ci mod N.

3. Each bidder i produces his/her VTC (commitment and proofs) by considering

encrypted bid c as a value to be committed. In other words, each of them

performs the following steps:

Setup phase: Same as VTC setup parameters.

Commit and prove phase: For a given (crs, wit), follow the steps:

-wit := c, crs := (crsrange, pp), h := gc.

-For all i ∈ {1, 2, . . . , t− 1}, sample ci ← Zq and fix hi = gci .

-For all i ∈ {t, . . . , n} compute

ci =

c−
∑
j∈[t]

cj · lj(0)

 · li(0)−1

and

hi =

(
h∏

j∈[t] h
lj(0)
j

)li(0)
−1

,

-For i ∈ [n], produce puzzles of shares and related proofs as

ri ← {0, 1}λ, Zi ← LHTLP.PuzzleGeneration(pp, ci; ri)

and

πrange,i ← ZKProve(crsrange, (Zi, a, b, T), (ci, ri)),

where [a, b] is the range of the length of the committed value c.

-Calculate

I ← H ′(pk, (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n)),

where pk is the public key of the corresponding bidder.

56

E(B_1)

Encrypt bid with RSA

E(B_2)

Encrypt bid with RSA

E(B_3)

Encrypt bid with RSA

Bidder 1(B_1) Bidder 3(B_3)Bidder 2(B_2) Bidder n(B_n)

E(B_n)

Encrypt bid with RSA

VTC(E(B_1)) VTC(E(B_2)) VTC(E(B_3)) VTC(E(B_n))

D(E(B_i)) for i=1,2,....,n

Auctioneer
Encrypted bids are decrypted by the
auctioneer and highest bidder wins

VTC's are sent and forced
open after time T

Figure 4.2: Bidding Phase with VTC

-Output the commitment C := (Z1, . . . , Zn, T) and corresponding range proof

π := ({hi, πrange,i}i∈[n], I, {ci, ri}i∈I).

-Final output is (h,C, π).

4. Auctioneer: calculates all bids after time T with the help of the ForceOp algo-

rithm. Then, he compares them to find the maximum bid. He announces the

winner to the whole group.

The aim of Stage 2 is to mainly satisfy the verifiability and confidentiality of the bids

and to make sure that all the bids are opened after some predefined time T in order

to construct a fair auction. Assuming that placing encrypted bids in TLP in order to

implement the VTC protocol is mandated by the auction contract, we guarantee that

each bidder will keep their bid equally confidential.

Note that there are important points that are valid for both stages and need to be

underlined. The first of them is that the message to be signed in the first stage and the

bids to be encrypted in the second stage must be less than the selected RSA modulus

57

Auctioneern-Bidders

VTC's of n-bidders

1-Contract is sent by the seller

2-Auctioneer signs the contract and sends it to the bidders

3-Bidders sign the signature of the auctioneer and send it to the seller
and seller creates the multi-signature as a combiner

4-Bidders encrypt their bids(B_i<N) with auctioneers public key
and send them to the auctioneer via VTC

5-All the VTCs are delivered to the auctioneer
and can be forced open after time T

6-Auctioneer opens the commitments,
decrypts the encrypted bids, compare them and announces the winner

Auction contract

Seller

Figure 4.3: Proposed Auction Scheme

N . When holding an auction in this way, this modulus value must be predetermined

by a trusted party. In the proposed auction mechanism, we accept that the seller

made this choice and that the seller is reliable since he/she is the person who creates

the rules in a legal framework and will provide the product. Last, but not least, the

primary task of VTCs is to maintain fairness by securely storing bids for time T .

Figure 4.3 illustrates the high-level overview of the full proposed auction scheme.

4.2 Security Consideration

In this section, the targeted security analysis for the first and second parts of our

hybrid scheme will be discussed. In the first part, the aim is to make the auctioneer

and bidders responsible to the seller by producing a multi-signature on an auction

contract. Within a multi-signature context, the natural expectation is unforgeability.

In the second part of our hybrid scheme, the aim is to provide soundness and pri-

vacy as in [28] of the timed commitments which are used to lock bid shares of the

corresponding bids. Other general privacy and security considerations of the auction

protocols are defined in Section 2.10.1.

58

4.2.1 Security analysis

Theorem 17 (Soundness of the VTCs): The conclusion that can be drawn from

Stage 2 is that if each LHTLP generated by every bidder adheres to the criteria of

being a time-lock puzzle with perfect correctness, then the VTCs produced by the

bidders satisfy the soundness requirements within the context of the random oracle

model.

Theorem 18 (Privacy of the VTCs): It is asserted in Stage 2 that if each LHTLP

is a secure time-lock puzzle, then VTCs produced by the bidders meet the privacy

requirements outlined in Definition 5 within the random oracle model.

Theorem 19 (Unforgeability of the multi-signature): Stage 1 of the proposed scheme

produces an unforgeable multi-signature scheme under the computational co-Diffie-

Hellman problem in the random-oracle model.

The proofs are similar to the proofs given in Appendix.

These theorems are important while proving the security of the cryptographic mech-

anisms underlying the proposed auction scheme. On the other hand, if we evaluate

the proposed scheme in terms of the general auction considerations given in Section

2.10.1, we can consider as follows:

• Non-repudiation: Multi-signature scheme is created to provide non-repudiation.

• Privacy: All the bids are encrypted by the auctioneer’s public key therefore

only the auctioneer can open all the bid values. Within the signed contract in

the first stage, it is expected to be stated that the auctioneer does not reveal the

losing bids. In that case, since the auctioneer can see all the bids after time T ,

we can say that our proposed scheme satisfies partial privacy.

• Verifiability: All the bids are shared by a verifiable timed commitment which

can be checked by any participant.

• Secrecy: In our scheme, we did not focus on protecting the personal identities

of bidders, but we think this can be easily achieved by assigning each VTC

59

group to a different user identifier.

• Robustness: In the first stage, we try to maintain the integrity of the auctioneer

and bidders by signing the contract with a joint multi-signature. In the second

stage, we aim to detect any abuse and apply the rules in the contract in case of

any abuse, with verifiable commitments.

• Fairness: Let’s say that after the auctioneer calculates the highest bidding

amount, he/she announces that amount by increasing it in favor of a pre-arranged

bidder, declaring that the pre-arranged bidder is the winner. Even if he/she does

this, the seller or any participant can encrypt the announced value with the auc-

tioneer’s public key and publicly solve the VTC in question, compare the output

value with the encrypted value, and notice the change. In this way, a reliable

and fair system is established for both bidders and auctioneers.

• Anonymity: In our scheme, we did not focus on protecting anonymity.

60

CHAPTER 5

CONCLUSION

This chapter summarizes the findings and contributions of the thesis on verifiable

timed commitments and suggests future research directions to improve the efficiency

and scalability of the proposed timed signature schemes.

The thesis primarily focused on novel applications of verifiable timed commitment

schemes within different scenarios. In Chapter 3, our target was to design a timed

signature scheme by taking into account the efficient implementations of verifiable

timed commitments. In Section 3.1, we wanted to address the time-constraint re-

quirements of proxy signatures, focusing on the delegation or signing stages. We

considered different scenarios such as granting limited-time authority during the del-

egation process, enabling the authority to become usable after a specific time, and

allowing the proxy signature to be opened only after a certain period has passed.

Furthermore, the evaluation process of these scenarios in terms of satisfying various

security requirements of proxy signatures was described. It was demonstrated that all

three proposed schemes fulfill the security properties expected in proxy signatures. A

comparison was made between the proposed usage scenarios and existing proxy sig-

nature schemes in terms of computational complexity. Given that there is currently

no proxy signature scheme that utilizes verifiable timed commitments with time lock

puzzles, the computational complexity of the commitment creation process can be

seen as an additional cost. When comparing these algorithms, it becomes evident that

our proposed schemes introduce more computational complexity due to the cost of

timed commitment calculations. However, our schemes offer added transparency and

traceability, making them well-suited for specific use cases in decentralized infras-

61

tructures like blockchain.

In Section 3.2, we focused on transforming multi-signatures into timed multi-signatures.

There were two significant approaches to achieve this. The first approach involved in-

corporating the individual signatures of signers into a timed commitment structure.

The second approach involved adapting the overall multi-signature structure created

by the combiner into a timed commitment framework. In this regard, we priori-

tized the transformation of efficient algorithms proposed for blockchain structures

like MSP and ASM [4] into timed versions. When considering the effective use cases

of these algorithms, it was observed that they are well-suited for the timed signature

structure and they present a novel approach to generating proxy multi-signatures. By

following this approach, in Section 3.2.4, we presented a compact scheme, named a

verifiable accountable timed proxy multi-signature scheme(VAT-PMS) that encom-

passes the proposed timed versions of signatures and multi-signatures. In Table 3.2,

we demonstrated the additional computational overhead required for pairing-based

timed signature structures to be transformed into multi-signatures, particularly timed

multi-signatures. During this process, we showed that among our proposed timed

multi-signature solutions, VT-MSP-v2 exhibits the highest computational efficiency.

On the other hand, in Chapter 4, we focused on designing an end-to-end auction

system using verifiable timed commitments. We constructed this framework by com-

bining two stages. The first stage involves the establishment of rules and the mutual

signing of a contract by bidders and the auctioneer using a multi-signature. The sec-

ond stage focuses on the bidding process, emphasizing the verifiability of bids. These

stages form a hybrid framework that incorporates both aspects. To ensure the fulfill-

ment of the expected conditions while designing a secure auction, we utilized verifi-

able timed commitments in this process. Security proofs of all proposed algorithms

and structures are given in the appendix.

As future work, it is important to conduct additional research on improving the effi-

ciency of the schemes. Reducing the computational costs would greatly enhance their

practical viability. In addition, assessing the scalability of the proposed approach to

conduct large-scale auctions with many participants and the effect of timed commit-

ments would be an interesting study.

62

REFERENCES

[1] R. Alvarez and M. Nojoumian, Comprehensive survey on privacy-preserving
protocols for sealed-bid auctions, Computers & Security, 88, p. 101502, 2020.

[2] M. R. Asaar, M. Salmasizadeh, and W. Susilo, A short id-based proxy signature
scheme, International Journal of Communication Systems, 29(5), pp. 859–873,
2016.

[3] E.-O. Blass and F. Kerschbaum, Strain: A secure auction for blockchains, in
Computer Security: 23rd European Symposium on Research in Computer Secu-
rity, ESORICS 2018, Barcelona, Spain, September 3-7, 2018, Proceedings, Part
I 23, pp. 87–110, Springer, 2018.

[4] D. Boneh, M. Drijvers, and G. Neven, Compact multi-signatures for smaller
blockchains, in Advances in Cryptology–ASIACRYPT 2018: 24th International
Conference on the Theory and Application of Cryptology and Information Secu-
rity, Brisbane, QLD, Australia, December 2–6, 2018, Proceedings, Part II, pp.
435–464, Springer, 2018.

[5] D. Boneh, B. Lynn, and H. Shacham, Short signatures from the weil pairing, in
Advances in Cryptology—ASIACRYPT 2001: 7th International Conference on
the Theory and Application of Cryptology and Information Security Gold Coast,
Australia, December 9–13, 2001 Proceedings 7, pp. 514–532, Springer, 2001.

[6] D. Boneh and M. Naor, Timed commitments, in Annual international cryptology
conference, pp. 236–254, Springer, 2000.

[7] J.-S. Chou, A novel anonymous proxy signature scheme, Advances in Multime-
dia, 2012, pp. 13–13, 2012.

[8] A. De Santis, S. Micali, and G. Persiano, Non-interactive zero-knowledge proof
systems, in Advances in Cryptology—CRYPTO’87: Proceedings 7, pp. 52–72,
Springer, 1988.

[9] H. Desai, M. Kantarcioglu, and L. Kagal, A hybrid blockchain architecture for
privacy-enabled and accountable auctions, in 2019 IEEE International Confer-
ence on Blockchain (Blockchain), pp. 34–43, IEEE, 2019.

[10] H. Du and J. Wang, An anonymous but accountable proxy multi-signature
scheme., J. Softw., 8(8), pp. 1867–1874, 2013.

63

[11] A. Fiat and A. Shamir, How to prove yourself: Practical solutions to identifi-
cation and signature problems, in Advances in Cryptology—CRYPTO’86: Pro-
ceedings 6, pp. 186–194, Springer, 1987.

[12] M. Fischlin and A. Mittelbach, An overview of the hybrid argument, Cryptology
ePrint Archive, 2021.

[13] H. S. Galal and A. M. Youssef, Verifiable sealed-bid auction on the ethereum
blockchain, in Financial Cryptography and Data Security: FC 2018 Inter-
national Workshops, BITCOIN, VOTING, and WTSC, Nieuwpoort, Curaçao,
March 2, 2018, Revised Selected Papers 22, pp. 265–278, Springer, 2019.

[14] W. Gao, W. Yu, F. Liang, W. G. Hatcher, and C. Lu, Privacy-preserving auc-
tion for big data trading using homomorphic encryption, IEEE Transactions on
Network Science and Engineering, 7(2), pp. 776–791, 2018.

[15] D. Johnson, A. Menezes, and S. Vanstone, The elliptic curve digital signature
algorithm (ecdsa), International journal of information security, 1, pp. 36–63,
2001.

[16] M. Kara, A. Laouid, and M. Hammoudeh, An efficient multi-signature scheme
for blockchain, Cryptology ePrint Archive, 2023.

[17] B. Lee, H. Kim, and K. Kim, Strong proxy signature and its applications, in
Proceedings of SCIS, volume 2001, pp. 603–608, 2001.

[18] J. Li, L. Xu, and Y. Zhang, Provably secure certificate-based proxy signature
schemes., J. Comput., 4(6), pp. 444–452, 2009.

[19] Q. Lin, J. Li, Z. Huang, W. Chen, and J. Shen, A short linearly homomorphic
proxy signature scheme, IEEE Access, 6, pp. 12966–12972, 2018.

[20] G. Malavolta and S. A. K. Thyagarajan, Homomorphic time-lock puzzles and
applications, in Advances in Cryptology–CRYPTO 2019: 39th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019,
Proceedings, Part I, pp. 620–649, Springer, 2019.

[21] M. Mambo, K. Usuda, and E. Okamoto, Proxy signatures: Delegation of the
power to sign messages, IEICE transactions on fundamentals of electronics,
communications and computer sciences, 79(9), pp. 1338–1354, 1996.

[22] S. Micali, K. Ohta, and L. Reyzin, Accountable-subgroup multisignatures, in
Proceedings of the 8th ACM Conference on Computer and Communications
Security, pp. 245–254, 2001.

[23] M. Naor, B. Pinkas, and R. Sumner, Privacy preserving auctions and mechanism
design, in Proceedings of the 1st ACM Conference on Electronic Commerce, pp.
129–139, 1999.

64

[24] R. L. Rivest, A. Shamir, and D. A. Wagner, Time-lock puzzles and timed-release
crypto, 1996.

[25] R. A. Sahu and S. Padhye, Identity-based multi-proxy multi-signature scheme
provably secure in random oracle model, Transactions on Emerging Telecom-
munications Technologies, 26(4), pp. 547–558, 2015.

[26] C.-P. Schnorr, Efficient identification and signatures for smart cards, in Ad-
vances in Cryptology—CRYPTO’89 Proceedings 9, pp. 239–252, Springer,
1990.

[27] J. Sun and H. Ma, Privacy-preserving verifiable incentive mechanism for online
crowdsourcing markets, in 2014 23rd International Conference on Computer
Communication and Networks (ICCCN), pp. 1–8, IEEE, 2014.

[28] S. A. Thyagarajan, G. Malavolta, and P. Moreno-Sanchez, Universal atomic
swaps: Secure exchange of coins across all blockchains, in 2022 IEEE Sympo-
sium on Security and Privacy (SP), pp. 1299–1316, IEEE, 2022.

[29] S. A. K. Thyagarajan, A. Bhat, G. Malavolta, N. Döttling, A. Kate, and
D. Schröder, Verifiable timed signatures made practical, in Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1733–1750, 2020.

[30] D. Unruh, Random oracles and auxiliary input, in Advances in Cryptology-
CRYPTO 2007: 27th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 19-23, 2007. Proceedings 27, pp. 205–223, Springer,
2007.

[31] G. K. Verma and B. Singh, Short certificate-based proxy signature scheme from
pairings, Transactions on Emerging Telecommunications Technologies, 28(12),
p. e3214, 2017.

[32] K. Zhang, Threshold proxy signature schemes, in Information Security: First
International Workshop, ISW’97 Tatsunokuchi, Ishikawa, Japan September 17–
19, 1997 Proceedings 1, pp. 282–290, Springer, 1998.

65

66

APPENDIX A

PROOFS OF THE THEOREMS

In this section, proofs of the theorems used in the above-mentioned and proposed

diagrams are given.

A.1 Proof of Theorem 1

Proof. In this context, we are focusing on the interactive version of our protocol, and

it is worth noting that the soundness of the non-interactive protocol can be inferred

from [11]. Let A be an attacker who breaks the sound by producing the commitment

C = (Z1, . . . , Zn) such that ∀Zi /∈ I , satisfies LHTLP.PuzzleSolve(pp, Zi) = σ̃i

where e(g2, σ̃i) ̸= e(hi, H(w)).

Let us suppose the opposite is true. In that case, it would be possible to recover a

legitimate signature on the message w by interpolating σ̃i with σii∈I , which meets the

aforementioned inequality condition. Also, let Zis be well-formed. In this case, with

given Zi values, through the process of solving the puzzles and confirming which

signature shares meet the inequality relation, we can obtain a polynomial-time solu-

tion for some set I ′ . When I
′
= I , the verifier can accept the statement provided

by the prover, indicating that the prover accurately guessed a randomly chosen n-bit

string with n/2-many 0’s. This situation could happen with a probability ((n/2)!)2

n!
.

In the non-interactive type of our protocol, this statement remains true in the face of

any number of simulated proofs, so long as the NIZK has the property of simulation-

soundness. Therefore, starting with a simulation-sound NIZK makes our scheme

simulation-sound as well.

67

In addition, the probabilistic condition in definition 2 tells us that although we can

verify the verification steps in VTS, there is a negligible possibility of obtaining a

signature that cannot be verified. This definition matches the proof given above.

Note that, this proof is similar to the proof of Theorem 5, 7, 10, and 16 as they are

also constructed with VTS.

A.2 Proof of Theorem 2

Proof. Considering all VTS operations are identical for any time value t, it is enough

to prove only one of them. Assume that A is an adversary of depth bounded by

T ϵ, where 0 ≤ ϵ < 1 and T is the predefined time for the puzzles. We use the

hybrid argument method [12] to construct a series of hybrids that is similar to VT-

BLS privacy proof [29].

• HybridH0 : Same as the original execution.

• Hybrid H1 : In this case, the random oracle is created by using lazy sampling,

which distinguishes it from H0 [30]. Moreover, a set I∗, comprising t − 1

elements, is selected beforehand and is used in the cut-and-choose step.

• Hybrid H2 : We sample a simulated crsrange. As it is used in the Zero-

Knowledge proof setup (in section 2.8), changing crsrange is indistinguishable.

• Hybrid H3 . . .H3+n : ∀i ∈ [n], the proof πrange,i is calculated by the simulator

provided by the NIZK proof in the hybrid H3+i. As it is used in the Zero-

Knowledge setup, the distance between all the hybrids is negligibly small.

• Hybrid H3+n+1 . . .H3+2n−t+1 : ∀i ∈ [n− (t− 1)], the puzzle of the i-th value

of the complement of the set I∗ is calculated by

LHTLP.PuzzleGeneration(pp, 0λ; ri).

In other words, we use 0λ for all the σi values within the puzzle generation

algorithm. The A is depth-bounded and therefore indistinguishability is based

on the security of the puzzle.

68

• Hybrid H3+2n−t+2 : The prover computes cut-and-choose protocol and corre-

sponding puzzles by choosing the first t − 1 share i ∈ I∗. For all i ∈ I∗, it

samples a uniform ki ← Zq and sets pk′i = gki and computes the corresponding

puzzles as in the VTS algorithm. For all i /∈ I∗, it computes pk′i as:

pk
′

i =

(
pk
′∏

j∈I∗ h
lj(0)
j

)li(0)
−1

(A.1)

The rest is not changed. We also know that, for all i /∈ I∗,∏
j∈I∗

h
lj(0)
j .h

li(0)
i = pk

′
.

Here, the simulator S is the same as the last hybrid. There is no information processed

about the witness who sees the correct value of σ. Below, the parts that have changed

until the final hybrid are highlighted. As can be seen, no information regarding σ was

used:

1. Setup phase: Run ZKSetup(1λ) to generate crsrange. Generate public parame-

ters

pp← LHTLP.PuzzleSetup(1λ, T)

and output crs := (crsrange, pp).

2. Commit and prove phase: For input (crs, wit), follow the steps below:

-crs := (crsrange, pp), pk
′ is the public key generated as in the BLS signature

scheme, and (apk, w) is used as the message.

-For all i ∈ I∗, sample αi ← Zq and fix σi = H(m)αi and hi := gαi
2 .

-For all i ∈ {t, . . . , n} compute:

σi =

(
σ∏

j∈[t−1] σ
lj(0)
j

)li(0)
−1

(A.2)

and

hi =

(
pk
′∏

j∈I∗ h
lj(0)

j

)li(0)
−1

-For i ∈ [n], generate puzzles and proofs

69

ri ← {0, 1}λ , Zi ← LHTLP.PuzzleGeneration(pp,0λ; ri) and

πrange,i is computed via the simulator.

Random oracle is (lazy)sampled, I∗ is also pre-sampled. The output of the

random oracle is deliberately configured to be I∗ for the cut-and-choose in-

stance.

-Calculate I∗ ← H ′∗(pk
′
, (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n)).

-Produce the commitment C := (Z1, . . . , Zn, T) and corresponding range proof

which is

π := (hi, πrange,ii∈[n], I
∗, {σi, ri}i∈I∗).

Therefore, the algorithm is private against the adversary A.

Note that, this proof is similar to the proof of Theorem 6, 8, 11, and 17 as they are

also constructed with VTS.

A.3 Proof of Theorem 3

Proof. In this context, we are focusing on the interactive version of our protocol, and

it is worth noting that the soundness of the non-interactive protocol can be inferred

from [11]. Let A be an attacker who breaks the sound by producing the commitment

C = (Z1, . . . , Zn) such that ∀Zi /∈ I , satisfies LHTLP.PuzzleSolve(pp, Zi) = w̃i

where hi ̸= gw̃i .

Let us suppose the opposite is true. In that case, it would be possible to recover a

legitimate warrant value by interpolating w̃i with {wi}i∈I , which meets the aforemen-

tioned inequality condition. Also, let Zis be well-formed. In this case, with given Zi

values, through the process of solving the puzzles and confirming which shares meet

the inequality relation, we can obtain a polynomial-time solution for the set I ′ . When

I
′
= I , the verifier can accept the statement provided by the prover, indicating that the

70

prover accurately guessed a randomly chosen n-bit string with n/2-many 0’s. This

situation could happen with a probability ((n/2)!)2

n!
. In the non-interactive variant of

our protocol, the above statement remains true in the face of any number of simulated

proofs, so long as the NIZK has the property of simulation-soundness. Therefore,

starting with a simulation-sound NIZK makes our scheme simulation-sound as well,

similar to Theorem 1.

In addition, the probabilistic condition in Definition 4 tells us that although we can

verify the verification steps in VTC, there is a negligible possibility of obtaining a

warrant that cannot be verified. This definition matches the proof given above.

Note that, this proof is similar to the proof of Theorem 13 and 19 as they are also

constructed with VTC.

A.4 Proof of Theorem 4

Proof. Considering all VTC operations are identical for any time value t, it is enough

to prove only one of them. Assume that A is an adversary of depth bounded by T ϵ,

where 0 ≤ ϵ < 1 and T is the predefined time for the puzzles. We construct a series

of hybrids to be used in the simulator S.

• HybridH0 : Same as the original execution.

• Hybrid H1 : In this case, the random oracle is created by using lazy sampling,

which distinguishes it from H0 [30]. Moreover, a set I∗, comprising t − 1

elements, is selected beforehand and is used in the cut-and-choose step.

• Hybrid H2 : We sample a simulated crsrange. As it is used in the Zero-

Knowledge proof setup (in section 2.8), changing crsrange is indistinguishable.

• Hybrid H3 . . .H3+n : ∀i ∈ [n], the proof πrange,i is calculated by the simulator

in the hybrid H3+i. As it is used in the Zero-Knowledge setup, the distance

between all the hybrids is negligibly small.

71

• Hybrid H3+n+1 . . .H3+2n−t+1 : ∀i ∈ [n− (t− 1)], the puzzle of the i-th value

of the complement of the set I∗ is calculated by

LHTLP.PuzzleGeneration(pp, 0λ; ri).

In other words, we use 0λ for all the wi values within the puzzle generation

algorithm. The A is depth-bounded and therefore indistinguishability is based

on the security of the puzzle.

• Hybrid H3+2n−t+2 : The prover computes cut-and-choose protocol and corre-

sponding puzzles by choosing the first t − 1 share i ∈ I∗. For all i ∈ I∗, it

samples a uniform wi ← Zq and sets pi = gwi
2 and computes the corresponding

puzzles as in the VTC algorithm. For all i /∈ I∗, it computes pi as:

pi =

(
p∏

j∈I∗ p
lj(0)
j

)li(0)
−1

(A.3)

The rest is not changed. We also know that, for all i /∈ I∗,∏
j∈I∗

p
lj(0)
j .p

li(0)
i = p.

Here, the simulator S is the same as the last hybrid. There is no information pro-

cessed about the witness who sees the correct value of the warrant w. Therefore, the

algorithm is private against the adversary A.

Note that, this proof is similar to the proof of Theorem 14 and 20 as they are also

constructed with VTC.

72

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Özden, Duygu

Nationality: Turkish

PUBLICATIONS

Conference

Duygu Özden, Oğuz Yayla. Verifiable Timed Commitments for Fair Sealed-bid Auc-

tions, International Conference on Cryptography, Informatics and Cybersecurity, Bo-

gor, Indonesia, 2023

Duygu Özden, Oğuz Yayla. Verifiable Timed Accountable Subgroup Multi-signatures,

2023. Submitted

Journal

Duygu Özden, Oğuz Yayla. Verifiable Timed Proxy Signatures and Multi-signatures.

July 2023. Submitted

73

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Background and Our Motivation
	Thesis Contribution
	Organization

	PRELIMINARIES
	RSA Encryption
	RSA Signature
	Bilinear Pairing
	BLS Signature
	Multi-signature Protocol (MSP)
	Accountable Subgroup Multi-signatures (ASM)
	ASM by Boneh et al.
	Security Requirements for Multi-signatures

	Proxy Signatures
	Security Requirements

	Zero Knowledge Proof (ZKP)
	Timed Cryptography
	Timed Signatures
	Time Lock Puzzles (TLP) and Advantages of Homomorphism:
	Verifiable Timed Signatures (VTS)
	Verifiable Timed BLS Signature (VT-BLS):

	Verifiable Timed Commitments (VTC)
	Security Requirements for VTS and VTC

	Auction Schemes
	Privacy and Security Considerations in Auctions

	VERIFIABLE TIMED COMMITMENT APPLICATIONS WITHIN SIGNATURE SCHEMES
	Verifiable Accountable Timed Proxy Signatures (VAT-PS)
	Scenario 1-VAT-PS by timed delegation
	Scenario 2-VAT-PS by time-bounded delegation
	Scenario 3-VAT-PS as a timed signature
	Security Analysis of VAT-PS Schemes
	VTS/VTC Security:
	Verifiability:
	Strong Unforgeability:
	Strong Undeniability:
	Strong Identifiability:
	Prevention of Misuse:

	Computational Complexity of VAT-PS Schemes

	Verifiable Timed Multi-signatures
	Verifiable Timed Multi-signature Protocol (VT-MSP-v1)
	Security of VT-MSP-v1:

	Verifiable Timed Multi-signature Protocol - VT-MSP-v2
	Security of VT-MSP-v2:

	Verifiable Timed Accountable Subgroup Multi-signatures
	Modified Accountable Subgroup Multi-signatures:
	VTC with mASM-v1 (VT-mASM-v1):
	Security of VT-mASM-v1:

	Verifiable Accountable Timed Proxy Multi-signatures (VAT-PMS):
	VAT-PMS as a timed signature:
	Security of VAT-PMS:

	Performance Evaluation:

	VERIFIABLE TIMED COMMITMENTS FOR FAIR SEALED BID AUCTIONS
	Proposed Auction Scheme
	Stage 1: Signing the contract of the auction
	Stage 2: Bidding phase with VTC

	Security Consideration
	Security analysis

	CONCLUSION
	REFERENCES
	APPENDICES
	Proofs of the Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	CURRICULUM VITAE

